
WWW.SECURITYPOLICYTOOL.COM 1

University Policy Test Cases
(InfoBeyond Technology LLC)

Abstract

This document demonstrates access control test cases using Security Policy Tool, a software tool for
Access Control Security Managers, Policy Authors, and other IT Security Professionals specializing in the
performance of access control systems. Access control policies are designed to protect the accessibility of
online resources in networks, IoTs, healthcare systems, financial service systems, enterprise IT and clouds,
military systems, and other online environments. There are several challenges in building robust access
control models for these systems including (i) effectively composing secure policies and rules, (ii) testing
these policies systematically, (iii) verifying these policies to prevent access control leaks. Security Policy
Tool solves these issues by providing powerful access control policy modeling, testing, and verification
features that empower organizations to close the door to access control leaks.

Index Terms

Access control, attribute-based access control (abac), role-based access control (rbac), security policy
editing, test, verification, deployment, access control leaks, XACML, software tool.

F

1 INTRODUCTION TO TEST CASES

This document and linked Security Policy Tool– Project Files have been designed to help you
gain an understanding of what common access control errors look like, how they are created, and
how to resolve them. Organizations who leverage Security Policy Tool’s systematic modeling,
testing and verification features are empowered to efficiently identify errors and close the door
to access control leaks.

These University Policy test cases are based on examples previously created by the National
Institute of Standards & Technology (NIST) to demonstrate commonly found errors in access
control policy logic similarly. These test cases consist of policies/rules from NIST’s example
as well as modifications to better illustrate how Security Policy Tool enhances access control
security. The goal of these test cases is to provide a starting point for what to expect as you go
on to use Security Policy Tool to analyze your own policy verification results for errors.

2 SETTING UP THE POLICIES – TEST CASE 1 (RULE CONFLICT)
This university example contains two policies (GradePolicy & TAPolicy). The Attribute /At-
tribute Values included in these policies are as shown in Figure 1.

• Contact us at: E-mail: Info@Securitypolicytool.com

Security Policy Tool (www.Securitypolicytool.com) is a commercial version of NIST(National Institute of Standards and Technology)’s ACPT
(Access Control Policy Tool). With tremendous consultation with NIST experts, Security Policy Tool substantially enhances and expands the
NIST’s ACPT design with advanced features for achieving high security confidence access control levels such that it can be commercialized.
The development of Security Policy Tool is financially sponsored by NIST via a SBIR (Small Business Innovation Research) Phase I and
II programs. It specifically improves the NIST’s ACPT design to provide a robust, unified, professional, and functionally powerful access
control policy tool.

www.InfoBeyondtech.com
https://securitypolicytool.com/Content/files/UniversityTestCases.zip
https://csrc.nist.gov/Projects/Access-Control-Policy-Tool/Beta-Release-Of-Access-Control-Policy-Tool
https://csrc.nist.gov/Projects/Access-Control-Policy-Tool/Beta-Release-Of-Access-Control-Policy-Tool
www.Securitypolicytool.com

WWW.SECURITYPOLICYTOOL.COM 2

Fig. 1. Test Case 1

3 MODELING YOUR POLICY – TEST CASE 1 (RULE CONFLICT)
Now that we have entered our attributes we can model our two policies (GradePolicy & TAPol-
icy). See the list below of the rules contained in each of these policies. You can open a “New
(blank) Project” and build these policies by entering the following rules below:

GradePolicy:
(Subject = Any Value & Grad = GraduateStudent A, ViewGrade, GradeBook One) → Permit
(Subject = Any Value & Grad = GraduateStudent A, AssignGrade, GradeBook One) →Deny
(Subject = Any Value & Grad = GraduateStudent A, Any Action, GradeBook Two) →Deny
(Subject = Any Value & Grad = GraduateStudent B, ViewGrade, GradeBook One) →Permit
(Subject = Any Value & Grad = GraduateStudent B, AssignGrade, GradeBook One) →Deny
(Subject = Any Value & Grad = GraduateStudent B, Any Action, GradeBook Two) →Deny
(Subject = Any Value & Grad = GraduateStudent C, ViewGrade, GradeBook Two) →Permit
(Subject = Any Value & Grad = GraduateStudent C, AssignGrade, GradeBook Two) →Deny
(Subject = Any Value & Grad = GraduateStudent C, Any Action, GradeBook One) →Deny

TAPolicy:
(Subject = Any Value & TA = GraduateStudent C, ViewGrade, GradeBook One) →Permit
(Subject = Any Value & TA = GraduateStudent C, AssignGrade, GradeBook One) →Deny
(Subject = Any Value & TA = GraduateStudent C, Any Action, GradeBook Two) →Deny
(Subject = Any Value & TA = TA Two, ViewGrade, GradeBook Two) →Permit
(Subject = Any Value & TA = TA Two, AssignGrade, GradeBook Two) →Permit
(Subject = Any Value & TA = TA Two, Any Action, GradeBook One) →Deny

After entering the rules above your modeled policies should look like the screenshots below. If
you did not create your own Project File, you can simply open Security Policy Tool – Project
File: UniversityTestCase1 and these policies will have been already created for you.

WWW.SECURITYPOLICYTOOL.COM 3

Fig. 2. GradePolicy

Fig. 3. TAPolicy

4 INDIVIDUAL SECURITY REQUIREMENTS - TEST CASE 1 (RULE CONFLICT)
The final step before analyzing these policies for errors is to create individual security require-
ments to use for testing. If you are building a “New (blank) Project” on your own you will enter
the security requirements as follows.

Individual Security Requirements:
(Grad = GraduateStudent C & TA = GraduateStudent C) & (Action = ViewGrade) & (GradeBook = GradeBook One) →
decision = Permit
(Grad = GraduateStudent C & TA = GraduateStudent C) & (Action = ViewGrade) & (GradeBook = GradeBook Two) →
decision = Permit

After entering the rules above your individual security requirements should look like the screen-
shots below. If you did not create your own Project File you can simply open Security Policy
Tool – Project File: UniversityTestCase1 and these requirements will have been already created
for you.

WWW.SECURITYPOLICYTOOL.COM 4

Fig. 4. Individual Security Requirements

5 POLICY VERIFICATION/ANALYZING RESULTS - TEST CASE 1 (RULE CONFLICT)
Now that we are ready to test our policies let’s discuss the error we will be looking at in this
first example. When policies are designed, there is potential for a “Rule Conflict” being created.
A Rule Conflict occurs when two or more rules are defining opposite authorization in an access
control policy.

In our example, an individual at this university has a role of both TA and Graduate Student
at the facility. Due to this, the individual is assigned both (TA: GraduateStudent C and Grad:
GraduateStudent C) attribute values by the system during access evaluation. In the GradePolicy
it defines that graduate students can view grades but cannot assign grades. However, in the
TAPolicy graduate students can assign grades resulting in a Rule Conflict (e.g., Permitted to
AssignGrade in TAPolicy, Denied to AssignGrade in GradePolicy).

Next, we will run two “Single Policy” Verifications to reveal the Rule Conflict that is present in
our policies. To do this, we will select GradePolicy and Test Case 1 (security requirement) as a
Single Policy Verification and also choose TAPolicy and Test Case 1 (security requirement) as a
Single Policy Verification and analyze our verification results. Again, this will have already been
done for you if you open Project File: UniversityTestCase1.

Fig. 5. GradePolicy x Test Case 1

Fig. 6. TAPolicy x Test Case 1

WWW.SECURITYPOLICYTOOL.COM 5

As you can see from our verification results our policies are both Permitting and Denying the in-
dividual (Grad = GraduateStudent C/TA = GraduateStudent C) from viewing GradeBook One
and GradeBook Two which is known as a Rule Conflict error.

6 RESOLVING THIS ERROR - TEST CASE 1 (RULE CONFLICT)
To solve a Rule Conflict the policy author would need to go back and either update or delete
the related rules to the error. To view which specific Rules are resulting in these Verification
Results we can click on all (4) of our specific Results (GradePolicyxTestCase1: False;True &
TAPolicyxTestCase1: True;False) and see which Rules have “Match Results”.

See the screenshots below of our two Policies Match Results to discover which specific rules are
related to our Verification Results (e.g., False, True).

Fig. 7. GradePolicy: Match Results (GradeBook One)

Fig. 8. GradePolicy: Match Results (GradeBook Two)

WWW.SECURITYPOLICYTOOL.COM 6

Fig. 9. TAPolicy: Match Results (GradeBook One)

Fig. 10. TAPolicy: Match Results (GradeBook Two)

Now that we have pinpointed our (4) Rules related to our Rule Conflict Error we can go back and
make changes or possibly remove these rules. Depending on your organizational structure the
policy author or access control administrator would need to decide what is the most appropriate
action to take to resolve the error. There is no “right” or “wrong” solution for this, you would
need to determine what is suitable based on your organizational needs.

For our example, let’s assume this individual within both of our policies (GraduateStudent C)
should be allowed to View GradeBook Two & GradeBook One, however, the individual should
NOT be able to AssignGrade to GradeBook Two because within GradeBook Two is his own
grade. He can still AssignGrade to GradeBook One because it is required for his TA duties. To
resolve this, we will add 2 rules and delete 1 rule in both policies which will in turn resolve the
Rule Conflict.

GradePolicy: Delete (1) Current Rule:
(Rule No. = 9) → (Subject = Any Value & Grad = GraduateStudent C) → (Action = Any Value) → (Resource = GradeBook One)

→ decision = Deny

WWW.SECURITYPOLICYTOOL.COM 7

GradePolicy: Add (2) New Rules:
(Rule No. = 9) → (Subject = Any Value & Grad = GraduateStudent C) → (Action = ViewGrade) → (Resource = GradeBook One)
→ decision = Permit
(Rule No. = 10) → (Subject = Any Value & Grad = GraduateStudent C) → (Action = AssignGrade) → (Resource = GradeBook One)
→ decision = Permit

TAPolicy: Delete (1) Current Rule:
(Rule No. = 3) → (Subject = Any Value & TA = GraduateStudent C) → (Action = Any Value) → (Resource = GradeBook Two)
→ decision = Deny

TAPolicy: Add (2) New Rules:
(Rule No. = 6) → (Subject = Any Value & TA = GraduateStudent C) → (Action = ViewGrade) → (Resource = GradeBook Two)
→ decision = Permit
(Rule No. = 7) → (Subject = Any Value & TA = GraduateStudent C) → (Action = AssignGrade) → (Resource = GradeBook Two)
→ decision = Permit

Fig. 11. GradePolicy: Delete Rule (9)

Fig. 12. GradePolicy: Add New Rules

Fig. 13. TAPolicy: Delete Rule (3)

Fig. 14. TAPolicy: Add New Rules

After we “Refresh” our previous Verification Results we no longer have a Rule Conflict occur-
ring. . . .

WWW.SECURITYPOLICYTOOL.COM 8

Fig. 15. Updated Results: GradePolicy (No Rule Conflict)

Fig. 16. Updated Results: TAPolicy (No Rule Conflict)

7 SETTING UP THE POLICIES – TEST CASE 2 (NOT PROTECTED RESOURCE)
This university example contains two policies (GradePolicy & TAPolicy). The attributes in this
example have been changed slightly from previous Test Case 1. TA’s attribute value has been
changed from “GraduateStudent C” to “TA One” and also GradeBook has gained a new at-
tribute value called “GradeBook Three.” The Attribute/Attribute Values included in these poli-
cies are as shown in Figure 17.

WWW.SECURITYPOLICYTOOL.COM 9

Fig. 17. Test Case 2

8 MODELING YOUR POLICY – TEST CASE 2 (NOT PROTECTED RESOURCE)
Now that we have entered our attributes we can model our two policies (GradePolicy & TAPol-
icy). See the list below of the rules contained in each of these policies. You can open a “New
(blank) Project” and build these policies by entering the following rules below:

GradePolicy:
(Grad = GraduateStudent A, ViewGrade, GradeBook One) → Permit
(Grad = GraduateStudent A, AssignGrade, GradeBook One) →Deny
(Grad = GraduateStudent A, Any Action, GradeBook Two) →Deny
(Grad = GraduateStudent B, ViewGrade, GradeBook One) →Permit
(Grad = GraduateStudent B, AssignGrade, GradeBook One) →Deny
(Grad = GraduateStudent B, Any Action, GradeBook Two) →Deny
(Grad = GraduateStudent C, ViewGrade, GradeBook Two) →Permit
(Grad = GraduateStudent C, AssignGrade, GradeBook Two) →Deny
(Grad = GraduateStudent C, Any Action, GradeBook One) →Deny

TAPolicy:
(TA = TA One, ViewGrade, GradeBook One) →Permit
(TA = TA One, AssignGrade, GradeBook One) →Permit
(TA = TA One, Any Action, GradeBook Two) →Deny
(TA = TA Two, ViewGrade, GradeBook Two) →Permit
(TA = TA Two, AssignGrade, GradeBook Two) →Permit
(TA = TA Two, Any Action, GradeBook One) →Deny

After entering the rules above your modeled policies should look like the screenshots below. If
you did not create your own Project File, you can simply open Security Policy Tool – Project
File: UniversityTestCase2 and these policies will have been already created for you.

WWW.SECURITYPOLICYTOOL.COM 10

Fig. 18. GradePolicy

Fig. 19. TAPolicy

9 INDIVIDUAL SECURITY REQUIREMENTS - TEST CASE 2 (NOT PROTECTED RE-
SOURCE)
The final step before analyzing these policies for errors is to create individual security require-
ments to use for testing. If you are building a “New (blank) Project” on your own you will enter
the following security requirement below:

Individual Security Requirement:
(TA = TA One) & (Action = Any) & (GradeBook =GradeBook Three) → decision = Permit

After entering the rule above your individual security requirement should look like the screen-
shot below. If you did not create your own Project File you can simply open Security Policy
Tool – Project File: UniversityTestCase2 and this requirement will have been already created for
you.

Fig. 20. Individual Security Requirement

WWW.SECURITYPOLICYTOOL.COM 11

10 POLICY VERIFICATION/ANALYZING RESULTS - TEST CASE 2 (NOT PROTECTED
RESOURCE)
Now that we are ready to test our policies let’s discuss the error we will be looking at in this
second example. When policies are designed there is potential for a “Not Protected Resource”
error being created by mistake. A Not Protected Resource error occurs when a resource is created
but without protection from any rules.

For example, when the policy author was designing the logic for these university policies; the
author created a resource “GradeBook Three” with no protections. This means there are not
currently any rules defined that are giving a decision for an access request to the resource. This
Not Protected Resource error is not caused by any specific rules in either of our policies; it is
caused due to a lack of rules created to cover this resource.

Next, we will run one “Combined Policy” Verification to reveal the Not Protected Resource error
that is present in our policies. To do this, we will select Test Case 2 (security requirement) and
GradePolicy & TAPolicy as a Combined Policy Verification and analyze our verification result.
Again, this will have already been done for you if you open Project File: UniversityTestCase2.

Fig. 21. Combined Policy x Test Case 2

By clicking on the Verification Result, we can analyze deeper the reasoning for the “False” result
we have received. Here is where we will notice we have not created any Rules that are attached
to Resource = GradeBook Three. We see this by noticing that every “Match Result” is “Not
Applicable” whereas if there were Rules protecting this resource we would have seen at least
one Rule with a (Permit or Deny) Match Result.

WWW.SECURITYPOLICYTOOL.COM 12

Fig. 22. GradePolicy: Match Results

Fig. 23. TAPolicy: Match Results

11 RESOLVING THIS ERROR - TEST CASE 2 (NOT PROTECTED RESOURCE)
To eliminate a Not Protected Resource vulnerability the policy author would need to define a
specific rule for the unprotected resource (GradeBook Three) and then test again to verify the
intended access decision is being made based on this new rule design.

For example, if we’re to add this rule below to the TAPolicy. . .

WWW.SECURITYPOLICYTOOL.COM 13

TAPolicy: Add (1) New Rule:
(Rule No. = 7) → (TA = TA One) → (Action = Any Value) → (Resource = GradeBook Three) → decision = Permit

Fig. 24. TAPolicy: New Rule (7)

Then retest using the same Policy Verification selections as last time we will get the same False
Verification result due to our Algorithm selections. However, we can see in the Match Results
that we have provided a rule for the system to evaluate for TA One accessing this Resource.

Fig. 25. Updated Policy: Resource Now Protected

12 SETTING UP THE POLICIES – TEST CASE 3 (UNDECIDED RULE)
This university example contains two policies (GradePolicy & TAPolicy). The attributes in this
example have not been changed from previous Test Case 2. The Attribute/Attribute Values
included in these policies are as shown in Figure 26.

WWW.SECURITYPOLICYTOOL.COM 14

Fig. 26. Test Case 3

13 MODELING YOUR POLICY – TEST CASE 3 (UNDECIDED RULE)
Now that we have entered our attributes we can model our two policies (GradePolicy & TAPol-
icy). See the list below of the rules contained in each of these policies. You can open a “New
(blank) Project” and build these policies by entering the following rules below:

GradePolicy:
(Grad = GraduateStudent A, ViewGrade, GradeBook One) → Permit
(Grad = GraduateStudent A, AssignGrade, GradeBook One) →Deny
(Grad = GraduateStudent A, Any Action, GradeBook Two) →Deny
(Grad = GraduateStudent A, ViewGrade, GradeBook Three) →Permit
(Grad = GraduateStudent A, AssignGrade, GradeBook Three) →Deny
(Grad = GraduateStudent B, ViewGrade, GradeBook One) →Permit
(Grad = GraduateStudent B, AssignGrade, GradeBook One) →Deny
(Grad = GraduateStudent B, Any Action, GradeBook Two) →Deny
(Grad = GraduateStudent B, ViewGrade, GradeBook Three) →Permit
(Grad = GraduateStudent B, AssignGrade, GradeBook Three) →Deny
(Grad = GraduateStudent C, ViewGrade, GradeBook Two) →Permit
(Grad = GraduateStudent C, AssignGrade, GradeBook Two) →Deny
(Grad = GraduateStudent C, Any Action, GradeBook One) →Deny
(Grad = GraduateStudent C, ViewGrade, GradeBook Three) →Permit
(Grad = GraduateStudent C, AssignGrade, GradeBook Three) →Deny

TAPolicy:
(TA = TA One, ViewGrade, GradeBook One) →Permit
(TA = TA One, AssignGrade, GradeBook One) →Permit
(TA = TA One, Any Action, GradeBook Two) →Deny
(TA = TA One, ViewGrade, GradeBook Three) →Permit
(TA = TA One, AssignGrade, GradeBook Three) →Permit
(TA = TA Two, ViewGrade, GradeBook Two) →Permit
(TA = TA Two, AssignGrade, GradeBook Two) →Permit
(TA = TA Two, Any Action, GradeBook One) →Deny

WWW.SECURITYPOLICYTOOL.COM 15

After entering the rules above your modeled policies should look like the screenshots below. If
you did not create your own Project File, you can simply open Security Policy Tool – Project
File: UniversityTestCase3 and these policies will have been already created for you.

Fig. 27. GradePolicy

Fig. 28. TAPolicy

14 INDIVIDUAL SECURITY REQUIREMENTS - TEST CASE 3 (UNDECIDED RULE)
The final step before analyzing these policies for errors is to create individual security require-
ments to use for testing. If you are building a “New (blank) Project” on your own you will enter
the following security requirement below:

Individual Security Requirement:
(TA = TA Two) & (Action = ViewGrade) & (GradeBook = GradeBook Three) →decision = Permit

After entering the rule above your individual security requirement should look like the screen-
shot below. If you did not create your own Project File you can simply open Security Policy
Tool – Project File: UniversityTestCase3 and this requirement will have been already created for
you.

WWW.SECURITYPOLICYTOOL.COM 16

Fig. 29. Individual Security Requirement

15 POLICY VERIFICATION/ANALYZING RESULTS - TEST CASE 3 (UNDECIDED RULE)
Now that we are ready to test our policies let’s discuss the error we will be looking at in this
third example. When policies are designed there is potential for an “Undecided Rule” error being
created. An Undecided Rule error occurs when your policy contains rules that are not entirely
defined or are missing a step.

For example, when the policy author was designing the logic for these university policies; the au-
thor created rules for all Subjects to access “GradeBook Three” but did not define access rules for
TA = TA Two. In this situation, if TA Two were to attempt to take action on “GradeBook Three,”
the system would be forced to make a default decision instead of a defined decision. This may
create a security vulnerability due to your system’s default evaluation decision being different
than what you previously intended. Similar to the “Not Protected Resource” example previously,
this error is caused due to the author missing rules. It is not caused due to flawed interpretation
of existing rules contained in either of our policies as was the case in Test Case 1 (Rule Conflict).

Next, we will run one “Combined Policy” Verification to reveal the Undecided Rule error that
is present in our policies. To do this, we will select Test Case 3 (security requirement) and
GradePolicy & TAPolicy as a Combined Policy Verification and analyze our verification result.
Again, this will have already been done for you if you open Project File: UniversityTestCase3.

Fig. 30. Combined Policy x Test Case 3

Like we did in the “Not Protected Resource” example, by clicking on the Verification Result we
can analyze deeper the reasoning for the “False” result we have received. Here is where we
would notice we have not created any Rules that are attached to Subject = TA Two taking
action on Resource = GraduateBook Three. We can see this by noticing that every “Match
Result” is “Not Applicable” whereas if there were Rules existing for TA Two and Resource
= GraduateBook Three we would have at least seen one Rule with a (Permit or Deny) Match
Result.

WWW.SECURITYPOLICYTOOL.COM 17

Fig. 31. GradePolicy: Match Results

Fig. 32. TAPolicy: Match Results

As you can see there has not been a rule defined for TA Two → Action → GraduateBook Three
which is known as an Undecided Rule error.

WWW.SECURITYPOLICYTOOL.COM 18

16 RESOLVING THIS ERROR - TEST CASE 3 (UNDECIDED RULE)
To solve this error, the policy author would need to define specific rules for all subject attributes
(e.g., include TA Two) in any policies that determine TA access requests to GraduateBook Three.

For example, adding these rules below to the TAPolicy for our specific example. . .

TAPolicy: Add (2) New Rules:
(Rule No. = 9) → (TA = TA Two) → (Action = ViewGrade) → (Resource = GradeBook Three) → decision = Permit
(Rule No. = 10) → (TA = TA Two) → (Action = AssignGrade) → (Resource = GradeBook Three) → decision = Permit

Fig. 33. TAPolicy: New Rules (9,10)

Now, looking out our Verification results and Match Results we will see that we no longer have
an “Undecided Rule” error occurring. The Verification Result is still “False” due to our choices
in our Combination Algorithm = Deny-overrides and Enforcement Algorithm = Deny Biased.

For example, GradePolicy has no rules related to the security requirement (TA Two → View-
Grades → GradeBook Three) we are using for testing which is why see all Match Rules =
Not Applicable. Due to our selection to use Deny Biased for our Enforcement Algorithm the
“Combined Result” for GradePolicy = Deny. However, in the case of the TAPolicy we have
the Combined Result = Permit due to the new rules we added (e.g., see new Rule 9 below).
Hence, we have opposing Combined Results (GradePolicy = Deny; TAPolicy = Permit). Finally,
the Combination Algorithm = Deny-overrides makes a definitive answer for our Verification
Results. The Deny-overrides selection overrules the Permit result from the TAPolicy in favor of
the Deny result from the GradePolicy to make the final Verification Result = False.

Fig. 34. Updated Results: No Undecided Rule

WWW.SECURITYPOLICYTOOL.COM 19

17 CONCLUSION

Now you should have a better understanding of what to look for as you go onto verify your
access control policies with Security Policy Tool. In addition to this document there are other
resources located in the Learning Center in your My account page that will help you start
leveraging Security Policy Tool to prevent access control leaks, today!

If you have not yet, download Security Policy Tool – Lite Version for FREE now! Close the door
the Access Control Leaks and save time and cost creating, modeling, testing, and verifying your
access control policies, today.

Click here to begin securing your policies now → Lite Version.

InfoBeyond Technology, LLC is an innovative company specializing in Network, Machine Learning and Data
Security within the Information Technology industry. The mission of InfoBeyond is to research, develop, and
deliver viable software products for network communication and security. Some of our research is sponsored by
Department of Defense, Department of Energy, Missile Defense Agency, Department of Transportation, NIST
(National Institute of Standards and Technology), etc. Security Policy Tool is Awarded the 2017 Innovative Se-
curity Solution Award at the 2017 Big Data and SDN/NFV Summit. NXdrive is a fragment-based cybersecurity
storage system and more information can be found at www.NXdrive.com. The company is featured as one of
50 fast growth IT small businesses in 2017 by The Silicon Review.

https://www.securitypolicytool.com/demo

