WWW.SECURITYPOLICYTOOL.COM 1

University Policy Test Cases

(InftoBeyond lechnology LL(})

Abstract

This document demonstrates access control test cases using Security Policy Tool, a software tool for
Access Control Security Managers, Policy Authors, and other IT Security Professionals specializing in the
performance of access control systems. Access control policies are designed to protect the accessibility of
online resources in networks, 10Ts, healthcare systems, financial service systems, enterprise IT and clouds,
military systems, and other online environments. There are several challenges in building robust access
control models for these systems including (i) effectively composing secure policies and rules, (ii) testing
these policies systematically, (iii) verifying these policies to prevent access control leaks. Security Policy
Tool solves these issues by providing powerful access control policy modeling, testing, and verification
features that empower organizations to close the door to access control leaks.

Index Terms

Access control, attribute-based access control (abac), role-based access control (rbac), security policy
editing, test, verification, deployment, access control leaks, XACML, software tool.

<+

1 INTRODUCTION TO TEST CASES

This document and linked [Fecurity Policy Tool- Project Filed have been designed to help you
gain an understanding of what common access control errors look like, how they are created, and
how to resolve them. Organizations who leverage Security Policy Tool’s systematic modeling,
testing and verification features are empowered to efficiently identify errors and close the door
to access control leaks.

These University Policy test cases are based on examples previously created by the Nafional
[nstitute of Standards & Technology (NIST) to demonstrate commonly found errors in access
control policy logic similarly. These test cases consist of policies/rules from NIST’s example
as well as modifications to better illustrate how Security Policy Tool enhances access control
security. The goal of these test cases is to provide a starting point for what to expect as you go
on to use Security Policy Tool to analyze your own policy verification results for errors.

2 SETTING UP THE POLICIES — TEST CASE 1 (RULE CONFLICT)

This university example contains two policies (GradePolicy & TAPolicy). The Attribute /At-
tribute Values included in these policies are as shown in Figure [I.

o Contact us at: E-mail: Info@Securitypolicytool.com

Security Policy Tool (fvww.Securitypolicyfool.com) is a commercial version of NIST(National Institute of Standards and Technology)'s ACPT
(Access Control Policy Tool). With tremendous consultation with NIST experts, Security Policy Tool substantially enhances and expands the
NIST’s ACPT design with advanced features for achieving high security confidence access control levels such that it can be commercialized.
The development of Security Policy Tool is financially sponsored by NIST via a SBIR (Small Business Innovation Research) Phase I and
II programs. It specifically improves the NIST's ACPT design to provide a robust, unified, professional, and functionally powerful access
control policy tool.

www.InfoBeyondtech.com
https://securitypolicytool.com/Content/files/UniversityTestCases.zip
https://csrc.nist.gov/Projects/Access-Control-Policy-Tool/Beta-Release-Of-Access-Control-Policy-Tool
https://csrc.nist.gov/Projects/Access-Control-Policy-Tool/Beta-Release-Of-Access-Control-Policy-Tool
www.Securitypolicytool.com

WWW.SECURITYPOLICYTOOL.COM

File Project Help

E ef8pana B -X 0 ¢

:;__j UniversityTestCase1.spt €3

Search

[universityTestaset spt

- Attribute

o Subject
- @ Grad ; http://www w3 org/2001/XMLSchema#string
GraduateStudent_A

GraduateStudent_B

g -8-20-

egn ' 'éi C

.
.
;

UniversityTestCasel.spt P

Attribute

@ 5 rows outof 5

Type Total Attribute(s)

Total Attribute Value(s)

Subject

Resgurce

Action

Envirenment

alofrmfn

olofem|n

|Subiects

GraduateStudent C Condition

B @ TA ; http://www.w3.0rg/2001/XMLSchemas#string

Graduate_C

TA Two

Inheritance @ 2 rows out of 2

=@ GradeBook ; http://www.w3.org/2001/XMLSchema#string Resources
: Type

i GradeBook_One ‘

& GradeBook_Two

= & Action

=@ UniActions ; http://fwww.w3.0rg/2001/XMLSchema#string

[E] Resource

Mo of Bensficiarie(s)

Subject Inheritance

ole

Resource Inheritance

Actions

ViewGrade ~

£y AssignGrade

e = N0 Environments 5
4 Condition il —— No Conditions THpe

ABAC 2
Multilevel 0
Workflow 0

Access Control Model

BT Inheritance

sk Subject Inheritance

;.f—; Resource Inheritance

Fig. 1. Test Case 1

3 MODELING YOUR PoLicYy — TEST CASE 1 (RULE CONFLICT)

Now that we have entered our attributes we can model our two policies (GradePolicy & TAPol-
icy). See the list below of the rules contained in each of these policies. You can open a “New
(blank) Project” and build these policies by entering the following rules below:

GradePolicy:

(Subject = Any Value & Grad = GraduateStudent_A, ViewGrade, GradeBook_One) — Permit
(Subject = Any Value & Grad = GraduateStudent_A, AssignGrade, GradeBook_One) —Deny
(Subject = Any Value & Grad = GraduateStudent_A, Any Action, GradeBook_Two) —Deny
(Subject = Any Value & Grad = GraduateStudent_B, ViewGrade, GradeBook_One) —Permit
(Subject = Any Value & Grad = GraduateStudent_B, AssignGrade, GradeBook_One) —Deny
(Subject = Any Value & Grad = GraduateStudent_B, Any Action, GradeBook_Two) —Deny
(Subject = Any Value & Grad = GraduateStudent_C, ViewGrade, GradeBook_Two) —Permit
(Subject = Any Value & Grad = GraduateStudent_C, AssignGrade, GradeBook_Two) —Deny
(Subject = Any Value & Grad = GraduateStudent_C, Any Action, GradeBook_One) —Deny

TAPolicy:

(Subject = Any Value & TA = GraduateStudent_C, ViewGrade, GradeBook_One) —Permit
(Subject = Any Value & TA = GraduateStudent_C, AssignGrade, GradeBook_One) —Deny
(Subject = Any Value & TA = GraduateStudent_C, Any Action, GradeBook_Two) —Deny

(Subject = Any Value & TA = TA_Two, ViewGrade, GradeBook_Two) —Permit

(Subject = Any Value & TA = TA_Two, AssignGrade, GradeBook_Two) —Permit

(Subject = Any Value & TA = TA_Two, Any Action, GradeBook_One) —Deny

After entering the rules above your modeled policies should look like the screenshots below. If
you did not create your own Project File, you can simply open Security Policy Tool — Project
File: UniversityTestCasel and these policies will have been already created for you.

WWW.SECURITYPOLICYTOOL.COM

-
GradPolicy Policy(s) Summary ® 1 rows outof 1 search <=]
Mode! Policy Name Rule Combination Algorithm Policy Enforcement Algorithm ‘ No. of Rule{s Time Created Last Modified =
AEAC GradPolicy Deny-overrides Deny Biased | =) .June 15_201§i1§411 | .June 14 201_5 1155. l-i =
Rule (s) defined with selected policy (GradPolicy): ® G rows outof 9 Search n§ 'E'
T
Sequence Ne Subject Resource Action Environment Condition Decision | nheritance Relation |
1 = & Grad = GraduateStudent A | GradeBook = GradeBock_One UniActions = ViewGrade Permit | Originated A
2 J¢ & Grad = GraduateStudent_A | GradeBook =GradeBook_One | UniActions = AssignGrade Deny Originated
3 = & Grad = GraduateStudent A | GradeBook = GradeBook_Two | alue Deny Originated
4 & Grad = GraduateStudent B | GradeBook = GradeBook_One UniActions = ViewGrade Permit Originated
s = & Grad = GraduateStudent_B | GradeBook = GradeBook_One | UniActions = AssignGrade Deny | Originated
& L& & Grad = GraduateStudent B | GradeBook = GradeBook_Two ctio alue Deny Originated
7 = & Grad = GraduateStudent ¢ | GradeBook = GradeBook_Two UniActions = ViewGrade Permit | Originated
8 = & Grad = GraduatsStudent ¢ | GradeBook = GradeBook_Two | UniActions = AssignGrade Deny Originated
9 & Grad = GraduateStudent C | GradeBook = GradeBook_One [Deny Originated
TAPolicy Policy(s) Summary @ 1rowsoutofl Search ﬂE 'E‘
Mode! Policy Name Rule Combination Algorithm Polic forcement Algorithm Neo. of Rule(s Time Created Last Modified B
ABAC TAPolicy | Deny-overrides Deny Biased 6 June 14, 2018 11:57:50 June 14, 2018 11:57:50 A ‘
) R) -
Rule (s) defined with selected pelicy (TAPolicy): ® & rows out of 6 Search [
Sequence No Subject Resource Action Environment Condition Decision Inheritance Relation |8
1 alus & TA=Graduate ¢ | GradeBook = GradeBook_One UniActions = ViewGrade Permit Originated -
2 & TA = Graduate C GradeBook =GradeBook_One | UniActions = AssignGrade Permi Originated
3 3lus & TA = Graduate C GradeBook = GradeBook_Two A y aluz Deny Originated
- & TA=TA Two GradeBook = GradeBook_Two UniActions = ViewGrade Permi Originated
5 & TA=TA Two | GradeBook = GradeBook_Two UniActions = AssignGrade Permi Originated
& slus &TA=TA Two | GradeBook =GradeBook_One Deny Originated

Fig. 3. TAPolicy

4 INDIVIDUAL SECURITY REQUIREMENTS - TEST CASE 1 (RULE CONFLICT)

The final step before analyzing these policies for errors is to create individual security require-
ments to use for testing. If you are building a “New (blank) Project” on your own you will enter

the security requirements as follows.

Individual Security Requirements:

(Grad = GraduateStudent_C & TA = GraduateStudent_C) & (Action = ViewGrade) & (GradeBook = GradeBook_One) —

decision = Permit

(Grad = GraduateStudent_C & TA = GraduateStudent_C) & (Action = ViewGrade) & (GradeBook = GradeBook_Two) —

decision = Permit

After entering the rules above your individual security requirements should look like the screen-
shots below. If you did not create your own Project File you can simply open Security Policy
Tool — Project File: UniversityTestCasel and these requirements will have been already created

for you.

WWW.SECURITYPOLICYTOOL.COM 4

= ot of -

Test Case 1(s] Summary ® 1rowsoutof 1 Search @
Access Control Security Requirement Reguirement Schema No. of Security Requirementis] =}
Individual Test Case 1 2 5

® 2 rows out of 2 =,

Security Requirement (s) defined under selected Reguirement Schema (Test Case 1): e Lrows outol 2 Search u§ L]
Sequence No Subject Re: Action Envirenment Condition -]
1 TA = Graduate_C & Grad = GraduateStudent_C GradeBook = GradeBook_One UniActions = ViewGrade "

2 TA = Graduate_C & Grad = Graduat: GradeBook = GradeBock_Two UniActions = ViewGrade

Fig. 4. Individual Security Requirements

5 PoLicY VERIFICATION/ANALYZING RESULTS - TEST CASE 1 (RULE CONFLICT)

Now that we are ready to test our policies let’s discuss the error we will be looking at in this
first example. When policies are designed, there is potential for a “Rule Conflict” being created.
A Rule Conflict occurs when two or more rules are defining opposite authorization in an access
control policy.

In our example, an individual at this university has a role of both TA and Graduate Student
at the facility. Due to this, the individual is assigned both (TA: GraduateStudent_C and Grad:
GraduateStudent_C) attribute values by the system during access evaluation. In the GradePolicy
it defines that graduate students can view grades but cannot assign grades. However, in the
TAPolicy graduate students can assign grades resulting in a Rule Conflict (e.g., Permitted to
AssignGrade in TAPolicy, Denied to AssignGrade in GradePolicy).

Next, we will run two “Single Policy” Verifications to reveal the Rule Conflict that is present in
our policies. To do this, we will select GradePolicy and Test Case 1 (security requirement) as a
Single Policy Verification and also choose TAPolicy and Test Case 1 (security requirement) as a
Single Policy Verification and analyze our verification results. Again, this will have already been
done for you if you open Project File: UniversityTestCasel.

Policy Verification (June 14, 2018 14:58:08)(s) Summary ® 1rowsoutof 1 Search =S
Status HName Verification Type verification Technigue Mumber of Policy(s) Combination Algorithm Enforcement Algorithm Policy List [
UpToDate Policy Verification [June 14, 2018 14:58:09) Standard Single Policy 1 Deny-overrides Deny Biased ABAC:GradePolicy]
Result(s) with selected verification (Policy Verificstion (June 14, 2018 14:58:09)] @ 2 rows out of 2 Search =]
Reguirement Schema Subject Resource Action Environment Condition Decision verification Result =
Test Case 1 TA = Graduate_C & Grad = GraduateStudent_C GradeBook = GradeBook_One UniActions = ViewGrade CrvironmEnt = A alue Candition = Any Valus Permit FALSE ~
Test Case 1 TA = Graduate_C & Grad = GraduateStudent_C GradeBook = GradeBook_Two UniActions = ViewGrade 2 =A a Co = Permit TRUE X
Palicy Verification (Juns 14, 2018 14:58:16](z) Summary ® 1 rows outof 1 search [E]
Status Name Type Verification Technigue Combination Algorithm Enforcement Algorithm Policy List [¢]
UpToDate Policy Verification (June 14, 2018 14:58:16) Standard Single Policy 1 Deny-overrides Deny Biased ABACTAPolicy 0
Result(s) with selected verification (Policy Verification (June 14, 2018 14:58:16)) ® 2 rows out of 2 Search <]
Reguirement Schema Subject Resource Action Environment Condition Decision verification Result [
TestCase 1 TA = Graduate C & Grad = GraduateStudent_C GradeBook = GradeBock_One UniActions = ViewGrads Environment = A alus Condition = Any Valus Permit TRUE "
Test Case 1 TA = Graduate_C & Grad = GraduateStudent_C GradeBook = GradeBook_Two UniActions = ViewGrads E - s 2 - e Permit FALSE i

Fig. 6. TAPolicy x Test Case 1

WWW.SECURITYPOLICYTOOL.COM 5

As you can see from our verification results our policies are both Permitting and Denying the in-
dividual (Grad = GraduateStudent C/TA = GraduateStudent C) from viewing GradeBook_One
and GradeBook Two which is known as a Rule Conflict error.

6 RESOLVING THIS ERROR - TEST CASE 1 (RULE CONFLICT)

To solve a Rule Conflict the policy author would need to go back and either update or delete
the related rules to the error. To view which specific Rules are resulting in these Verification
Results we can click on all (4) of our specific Results (GradePolicyxTestCasel: False;True &
TAPolicyxTestCasel: True;False) and see which Rules have “Match Results”.

See the screenshots below of our two Policies Match Results to discover which specific rules are
related to our Verification Results (e.g., False, True).

Result{s) with selected verification (Policy Verification (lune 14, 2018 14:58:09)] @ 2 rows outof 2 Search HE [
Requirement Schema Subject Resource Action Environment Condition Decision Verification Result
Test Case 1 TA = Graduate_C & Grad = GraduateStudent_C GradeBook = BradeBaok_One UniActions = ViewGrade En = Any Value Permit FALSE
Test Case 1 TA = Graduate_C & Grad = GraduateStudent_C GradeBook = GradeBook_Two UniActions = ViewGrade tign = Ar alue Permit TRUE
Policy(s) and Matching result against the selcted security reguirement: @ 1lrowsoutofl search HE IHI
Policy Name Rule Combination Algorithm Policy Enforcement Algorithm Combined Result
ABAC : GradePolicy Deny-overrides Deny Biased Deny
Rule(s) and Matching result of Selected Policy against the selcted security requirement: @@ G rows out of 9 Search GE IF;I
Sequence Mo Subject Resource Action Environment Condition Decision Inheritance Relation Match Result
1 =t = Ay vz 0= B Grad = GraduateStudent & | GradeBook = GradeBook _One Unidctions = ViewGrade Environment = Any Yalus | Condition = Any Valuzs Permit Originated Mot Applicable
2 Grad = GraduateStudent 4 | GradeBook = GradeBook_Qne | UniActions = AssignGrade = Deny Originated Mot Applicable
3 Grad = GraduateStudent A | GradeBook = GradeBock_Two SRV Deny Originated Not Applicable
4 -lu= & Grad = GraduateStudent B | GradeBook = GradeBook_One | UniActions = ViewGrade Permit Originated ot Applicable
5 Grad = GraduateStudent B | GradeBook = GradeBook_One | UniActions = AssignGrade Deny Originated Not Applicable
5 = & Grad = GraduateStudent_B | GradeBook = GradeBook Two ction =Any Value Deny Qriginated Not Applicable
7 = & Grad = GraduateStudent C | BradeBook = GradeBook_Two UniActions = ViewGrade Permit QOriginated Mot Applicable
8 L= & Grad = GraduateStudent C | GradeBook = GradeBook Two | UniActions = AssignGrade Deny Originated Mot Applicable
s 4ny V= .= B Grad = GraduateStudent_C | GradeBook = GradeBook One = Deny Originated Deny
Result(s) with selected verification (Policy Verification (June 14, 2018 14:58:09)] @ 2 rows outof 2 Search =l
Requirement Schema Subject Resource Action Environment Condition Werification Result
Test Case 1 TA = Graduate_C & Grad = GraduateStudent_C GradeBook = GradeBook_One UniActions = ViewGrade Permit FALSE
Test Case 1 TA = Graduate_C & Grad = GraduateStudent_C GradeBook = GradeBook_Two UniActions = ViewGrade Permit TRUE
Policyls) and Matching result against the selcted security reguirement: @ 1lrowsoutofl Search HE I,Eﬂ
Policy Name Rule Combination Algorithm Policy Enforcement Algorithm Combined Result
ABAC : GradePolicy Deny-overrides Deny Biased Permit
Rule(s) and Matching result of Selected Policy against the selcted security requirement: @ § rows out of 9 Search EE IF;I
Sequence Mo Subject Resource Action Environment Condition Decision Inheritance Relation Match Result
1 =1.= & Grad = GraduateStudent A | GradeBook = GradeBook_One UniActions = ViewGrade Permit Originated Mot Applicable
2 -1u= & Grad = GraduateStudent A | GradeBook = GradeBook_One | UniActions = AssignGrade Deny Originated Not Applicable
3 Grad = GraduateStudent_& | GradeBook = GradeBook_Two Action = Any Value Deny Originated Mot Applicable
4 B Grad = GraduateStudent B | GradeBook = GradeBook_One UniActions = ViewGrade Permit Originated Not Applicable
5 Grad = GraduateStudent B | GradeBook = GradeBook_One | UniActions = AssignGrade Deny Originated Mot Applicable
s = & Grad = Graduatestudent B | GradeBook = GradeBook_Two ction =Any Yalus Deny Qriginated Not Applicable
7 - & Grad = GraduateStudent C | BradeBook = GradeBook_Two Uni&ctions = ViewGrade Permit Originated Permit
8 - & Grad = GraduateStudent C | GradeBook = GradeBook Two | UniActions = AssignGrade Deny Originated Mot Applicable
9 =/uz B Grad = GraduateStudent ¢ | GradeBook = GradeBook_One Action = Any Value Deny Originated Not Applicable

Fig. 8. GradePolicy: Match Results (GradeBook Two)

WWW.SECURITYPOLICYTOOL.COM

Result(s) with selected verification (Policy Verification (June 14, 2018 14:58:16)) @ 2 rows outof 2 search ﬂg =
Requirement Schema Subject Resource Action Environment Condition Decision Verification Result

Test Case 1 TA = Graduate_C & Grad = GraduateStudent C GradeBook = Grad=Book_One UniActions = ViewGrade mEnt = Permit TRUE

TestCase 1 TA = Graduate_C & Grad = GraduateStudent C GradeBook = GradeBook_Two UniActions = ViewGrade Permit FALSE
Palicy(s) and Matching result against the selcted security requirement <& 1 rows out of 1 Search <]

Policy Name Rule Combination Algorithm Policy Enforcement Algorithm Combined Result
ABAC : TAPolicy Deny-overides Deny Biased Permit

Rule(s) and Matching result of Selected Policy against the selcted security requirement: @ & rows out of 6 search HE Iﬁl
S=quence No Subject Resource Action Environment Condition Decision Inheritance Relation Match Result

1 U= B TA = Graduate € GradeBook = GradeBook_One UniActions = ViewGrade Permit Originated Permit

2 8 TA = Graduzte C GradeBook = GradeBook_One UniActions = AssignGrade Permit Originated Not Applicable

3 L= & TA=Graduate C | GradeBook =GradeBook_Two Act alue Deny Originated Not Applicable

4 alus & TA=TA Two GradeBook = GradeBook_Two Uni&ctions = ViewGrade Permit Originated Not Applicable

5 sluz & TA=TA Two GradeBook = GradeBook_Two UniActions = AssignGrade Permit Originated Mot Applicable

3 sluz B TA=TA Two GradeBook =GradeBook_One | actjnn = Deny Originated Not Applicable
Result(s) with selected verification (Policy Verification (June 14, 2018 14:58:16)) @ 2 rows outof 2 Search [ER]
Requirement Schema Subject Resource Action Environment Condition Decision Verification Result

Test Case 1 TA = Graduate_C & Grad = GraduateStudent_C GradeBook = GradeBook_One UniActions = ViewGrade Permit TRUE

Test Case 1 TA = Graduate_C & Grad = GraduateStudent_C GradeBook = GradeBook_Two UniActions = ViewGrade Permit FALSE
Policy(s) and Matching result against the selcted security reguirement: @ 1lrowsoutofl search HE IHI

Policy Name Rule Combination Algorithm Policy Enforcement Algorithm Combined Result
ABAC : TAPolicy Deny-overrides Deny Biased Deny

Rule(s) and Matching result of Selected Policy against the selcted security requirement: @@ & rows out of 6 Search ﬂé lﬁl

Sequence No Subject Resource Action Environment Condition Decision Inheritance Relation Match Result
1 -= B TA =Graduate C GradeBook = GradeBook_One UniActions = ViewGrade Permit Originated Not Applicable
2 2= & TA=Graduate C GradeBook = GradeBook_One UniActions = AssignGrade Permit Originated Not Applicable
3 L= B TA=Graduate ¢ | GradeBook =GradeBook_Two Deny Originated Deny
4 alue B TA=TA Two GradeBook = GradeBook_Two Permit Originated Not Applicable
L slus & TA=TA Two GradeBook = GradeBook_Two UniActions = AssignGrade Permit Originated Not Applicable
5 alus & TA=TA Two GradeBook =GradeBook_One ction = Deny Originated Not Applicable

Fig. 10. TAPolicy: Match Results (GradeBook_Two)

Now that we have pinpointed our (4) Rules related to our Rule Conflict Error we can go back and
make changes or possibly remove these rules. Depending on your organizational structure the
policy author or access control administrator would need to decide what is the most appropriate
action to take to resolve the error. There is no “right” or “wrong” solution for this, you would
need to determine what is suitable based on your organizational needs.

For our example, let’s assume this individual within both of our policies (GraduateStudent C)
should be allowed to View GradeBook Two & GradeBook One, however, the individual should
NOT be able to AssignGrade to GradeBook_Two because within GradeBook Two is his own
grade. He can still AssignGrade to GradeBook_One because it is required for his TA duties. To
resolve this, we will add 2 rules and delete 1 rule in both policies which will in turn resolve the

Rule Conflict.

GradePolicy: Delete (1) Current Rule:
(Rule No. =9) — (Subject = Any Value & Grad = GraduateStudent_C) — (Action = Any Value) — (Resource = GradeBook_One)
— decision = Deny

WWW.SECURITYPOLICYTOOL.COM 7

GradePolicy: Add (2) New Rules:

(Rule No. =9) — (Subject = Any Value & Grad = GraduateStudent_C) — (Action = ViewGrade) — (Resource = GradeBook_One)
— decision = Permit

(Rule No. = 10) — (Subject = Any Value & Grad = GraduateStudent_C) — (Action = AssignGrade) — (Resource = GradeBook_One)
— decision = Permit

TAPolicy: Delete (1) Current Rule:
(Rule No. = 3) — (Subject = Any Value & TA = GraduateStudent_C) — (Action = Any Value) — (Resource = GradeBook_Two)
— decision = Deny

TAPolicy: Add (2) New Rules:

(Rule No. = 6) — (Subject = Any Value & TA = GraduateStudent_C) — (Action = ViewGrade) — (Resource = GradeBook_Two)
— decision = Permit

(Rule No. =7) — (Subject = Any Value & TA = GraduateStudent_C) — (Action = AssignGrade) — (Resource = GradeBook_Two)
— decision = Permit

a Subjec v Valu= & Grad = GraduateStudent C | GradeBook = GradeBook_One | sction=Any valus Environment= Any Valus Condition =24 alis Deny Originated

Fig. 11. GradePolicy: Delete Rule (9)

| ubject= 4ny Vslus & Grad = GraduasteStudent € ‘ GradeBook = GradeBook_One | UniActions = ViewGrade ‘ Enviranment = 4 3= | “ondition = anyiahie | Permit | COriginated |

| SubjEct= 2 2lu= & Grad = GraduateStudent C ‘ GradeBook = GradeBook_One | UniActions = AssignGrade ‘ Environment = Any Valus | rondition =4 2= | Permit | Originated |

Fig. 12. GradePolicy: Add New Rules

3 Subject= slu= & TA = Graduate C | GradeBook = GradeBook_Two ction= 2lle S alue 1 - Deny Originated

Fig. 13. TAPolicy: Delete Rule (3)

| 7 [Siblec=iny 5l B TA=Graduate ¢ | GradeBook=GradeBook Two | UniActions = ViewGrade, permit | Originated |

| z | cibec-in, sl-BTA=Graduaste ¢ | GradeBook=GradeBook Two | UniActions = AssignGrade | R— | o :.. sl | Demy | Originated |

Fig. 14. TAPolicy: Add New Rules

After we “Refresh” our previous Verification Results we no longer have a Rule Conflict occur-
ring....

WWW.SECURITYPOLICYTOOL.COM

Policy Verification (June 18, 2018 18:30:28)(s) Summary @ 1rowsoutof 1 Search 0 &
Status Name Verification Type Verification Technigue Number of Policy(s] Combination Algorithm Enforcement Algorithm Policy List e
UpToDate Policy Verification [June 19, 2018 18:30:28) Standard Single Policy 1 Deny-overrides Deny Biased ABAC:GradePolicy]
Result(s) with selected verification (Policy Verification (lune 18, 2018 18:30:28)) @ 2 rows out of 2 Search ﬂé (-]
Reguirement Schema Subject Resource Action Environment Condition Decision Verification Result (=]
TestCase 1 TA = Graduate_C & Grad = GraduateStudent_C GradeBook = GradeBook_One UniActions = ViewGrade Permit TRUE ~
Test Case 1 TA = Graduate_C & Grad = GraduateStudent_C GradeBook = GradeBook_Two UniActions = ViewGrade Permit TRUE o
Policy Verification (June 18, 2018 18:29:43)(s) Summary & 1rowsoutof 1 Search 0 &
Status Mame Verification Type Veerification Technigue Number of Palicy(s) Combination Algorithm Enforcement Algorithm Policy List 2
UpToDate Policy Verification [June 19, 2018 18:29:43) Standard Single Policy 1 Deny-overrides Deny Biased ABAC:TAPolicy =
Result(s) with selected verification (Policy Verification (lune 18, 2018 18:29:43)) @ 2 rows out of 2 Search ﬂé (-]
Reguirement Schema Subject Resource Action Environment Condition Decision Verification Result (=]
TestCase 1 TA = Graduate_C & Grad = GraduateStudent_C GradeBook = GradeBook_One UniActions = ViewGrade Permit TRUE ~
Test Case 1 TA = Graduate_C & Grad = GraduateStudent_C GradeBook = GradeBook_Two UniActions = ViewGrade Permit TRUE o

Fig. 16. Updated Results: TAPolicy (No Rule Conflict)

7 SETTING UP THE POLICIES — TEST CASE 2 (NOT PROTECTED RESOURCE)

This university example contains two policies (GradePolicy & TAPolicy). The attributes in this
example have been changed slightly from previous Test Case 1. TA’s attribute value has been
changed from “GraduateStudent C” to “TA_One” and also GradeBook has gained a new at-
tribute value called “GradeBook_Three.” The Attribute/Attribute Values included in these poli-

cies are as shown in Figure 2.

WWW.SECURITYPOLICYTOOL.COM 9

File Project Help
A EADARAEE-X ©®- -

'éj UniversityTestCase2.spt)

UniversityTestCase2 spt

search

[&) UniversityTestCase2 spt

il ® 5 rows outof 5
2@ Attribute Attribute

4 o Subject Tvpe Total Attribute(s) Total Attribute Value(s)

Grad ; http://wawnw.w3.0rg/2001/XVLSchemadstring Subject 2

- & GraduateStudent_A Resource

Action

GraduateStudent_B

: Subiects Enviranmens
GraduateStudent_C L

=@ TA ; http:/fwww.w3.org/2001/XMLSchema#string

ololm|w|un

oo -

- @@ TA_One

L. @ TA Two

Resource Inheritance <@ 2 rows out of 2

@ GradeBook ; http://www w3 ore/2004/XMLSchema#string
: Resources Type No of Beneficiarie(s)

; Tvpe
i@ GradeBook_One E-Seetietefer-Steier :

Subject Inheritance

alo

- GradeBook_Two Resource Inheritance

) GradeBook_Three

- A& Action
E‘ @ UniActions ; hitp://www.w3.org/2001/XMLSchemasstring ACtiOI‘IS

WiewGrade ~ . . s
Access Control Model @ 3 rows outof 3

i, AssignGrade

Type No of Policyls)

e e N0 Enivironments ABZC
% condiion fime——— No Conditions

Multilevel 0
Workflow]

£+ Inheritance

i & subject Inheritance

L. g, Resource Inheritance

Fig. 17. Test Case 2

8 MODELING YOUR PoLicYy — TEST CASE 2 (NOT PROTECTED RESOURCE)

Now that we have entered our attributes we can model our two policies (GradePolicy & TAPol-
icy). See the list below of the rules contained in each of these policies. You can open a “New
(blank) Project” and build these policies by entering the following rules below:

GradePolicy:

(Grad = GraduateStudent_A, ViewGrade, GradeBook_One) — Permit
(Grad = GraduateStudent_A, AssignGrade, GradeBook_One) —Deny
(Grad = GraduateStudent_A, Any Action, GradeBook_Two) —Deny
(Grad = GraduateStudent_B, ViewGrade, GradeBook_One) —Permit
(Grad = GraduateStudent_B, AssignGrade, GradeBook_One) —Deny
(Grad = GraduateStudent_B, Any Action, GradeBook_Two) —Deny
(Grad = GraduateStudent_C, ViewGrade, GradeBook_Two) —Permit
(Grad = GraduateStudent_C, AssignGrade, GradeBook_Two) —Deny
(Grad = GraduateStudent_C, Any Action, GradeBook_One) —Deny

TAPolicy:

(TA = TA_One, ViewGrade, GradeBook_One) —Permit
(TA = TA_One, AssignGrade, GradeBook_One) —Permit
(TA = TA_One, Any Action, GradeBook_Two) —Deny
(TA = TA_Two, ViewGrade, GradeBook_Two) —Permit
(TA = TA_Two, AssignGrade, GradeBook_Two) —Permit
(TA = TA_Two, Any Action, GradeBook_One) —Deny

After entering the rules above your modeled policies should look like the screenshots below. If
you did not create your own Project File, you can simply open Security Policy Tool — Project
File: UniversityTestCase2 and these policies will have been already created for you.

GradePclicy Policy(s) Summary <@ 1rows out of 1 Search ﬂa []
Model Policy Name Rule Combination Algorithm Policy Enforcement Algorithm No. of Rulg(s) Time Created Last Modified
ABAC GradePolicy Deny-overrides Deny Biased] June 14, 2018 11:54:11 June 14, 2018 11:54:11
Rule (s) defined with selected policy (GradePalicy) <& 9 rows out of 9 search | B8
Sequence No Subject Resource Action Environment Condition Decision Inheritance Relation
1 Grad = GraduateStudent_A GradeBook = GradeBook_One UniActions = ViewGrade Permit Qriginated
2 Grad = GraduateStudent_A GradeBook = GradeBook_One UniActions = AssignGrade Deny Originated
3 Grad = GraduateStudent_A GradeBook = GradeBock_Two Arin = N Deny Originated
4 Grad = GraduateStudent_B GradeBook = GradeBook_One UniActions = ViewGrade Permit Qriginated
s Grad = GraduateStudent_B GradeBook = GradeBook_One UniActions = AssignGrade Deny Originated
6 Grad = GraduateStudent_B GradeBook = GradeBook_Two Actic Any Valus Deny Originated
7 Grad = GraduateStudent_C GradeBook = GradeBook_Two UniActions = ViewGrade Permit Originated
8 Grad = GraduateStudent_C GradeBook = GradeBook_Two UniActions = AssignGrade Deny Originated
=] Grad = GraduateStudent_C GradeBook = GradeBook_One Deny Originated
TAPolicy Policy(s) Summary <@ 1rowsoutofl Search HE (]
Model Policy Name Rule Combination Algorithm Policy Enforcement Algorithm No. of Rule(s) Time Created Last Modified
ABAC TAPolicy Deny-overrides Deny Biased & June 14, 2018 11:57.50 June 14, 2018 11:57:50
Rule () defined with selected policy (TAPolicy) @ 6 Tows out of 6 Search =]
Sequence No Subject Resource Action Envirenment Condition Decision Inheritance Relation
1 TA=TA_One GradeBook = GradeBook_One UniActions = ViewGrade Permit Originated
2 TA=TA_One GradeBook = GradeBook_One UniActions = AssignGrade Permit Originated
3 TA=TA_One GradeBook = GradeBook_Two Action = Any Value Deny Originated
4 TA=TA_Two GradeBook = GradeBock_Two UniActions = ViewGrade Permit Originated
5 TA=TA Two GradeBook = GradeBook_Two UniActions = AssignGrade Permit Originated
[TA=TA Two GradeBook = GradeBook_One Action = A Deny Originated

Fig. 19. TAPolicy

9 INDIVIDUAL SECURITY REQUIREMENTS - TEST CASE 2 (NOT PROTECTED RE-

SOURCE)

The final step before analyzing these policies for errors is to create individual security require-
ments to use for testing. If you are building a “New (blank) Project” on your own you will enter
the following security requirement below:

Individual Security Requirement:

(TA = TA_One) & (Action = Any) & (GradeBook =GradeBook_Three) — decision = Permit

After entering the rule above your individual security requirement should look like the screen-
shot below. If you did not create your own Project File you can simply open Security Policy
Tool — Project File: UniversityTestCase2 and this requirement will have been already created for

Test Case 2(s) Summary ® 1rowsoutof1 Search =]
Access Control Security Requirement Requirement Schema Mo. of Security Requirement(s)
Individual Test Case 2 1
Security Requirement (s) defined under selected Requirement Schema (Test Case 2): @® 1rowsoutofl Search | ﬂa |F||
Sequence No Subject Resource Action Environment Condition Decision
1 TA=TA_QOne GradeBook = GradeBook_Three Permit

Fig. 20. Individual Security Requirement

WWW.SECURITYPOLICYTOOL.COM 11

10 PoLicy VERIFICATION/ANALYZING RESULTS - TEST CASE 2 (NOT PROTECTED
RESOURCE)

Now that we are ready to test our policies let’s discuss the error we will be looking at in this
second example. When policies are designed there is potential for a “Not Protected Resource”
error being created by mistake. A Not Protected Resource error occurs when a resource is created
but without protection from any rules.

For example, when the policy author was designing the logic for these university policies; the
author created a resource “GradeBook_Three” with no protections. This means there are not
currently any rules defined that are giving a decision for an access request to the resource. This
Not Protected Resource error is not caused by any specific rules in either of our policies; it is
caused due to a lack of rules created to cover this resource.

Next, we will run one “Combined Policy” Verification to reveal the Not Protected Resource error
that is present in our policies. To do this, we will select Test Case 2 (security requirement) and
GradePolicy & TAPolicy as a Combined Policy Verification and analyze our verification result.
Again, this will have already been done for you if you open Project File: UniversityTestCase2.

- ; T ——— =
Policy Verification (June 14, 2018 12:17:19)(s) Summary Search ﬂ§ =

Status Name Verification Type Policy List &)

[&

| UpToDate Policy Verification (lune 14, 2018 12:17:19) Standard ABAC:GradePalicy, ABACTAPolicy

Result(s) with selected verification (Policy Verification (June 14, 2018 12:17:19)) @ 1 rows out of 1

Requirement Schema Subject Resource Action Environment

Test Case 2 TA=TA_One GradeBock = GradeBook_Three 3 e Permit FALSE -

Fig. 21. Combined Policy x Test Case 2

By clicking on the Verification Result, we can analyze deeper the reasoning for the “False” result
we have received. Here is where we will notice we have not created any Rules that are attached
to Resource = GradeBook_Three. We see this by noticing that every “Match Result” is “Not
Applicable” whereas if there were Rules protecting this resource we would have seen at least
one Rule with a (Permit or Deny) Match Result.

WWW.SECURITYPOLICYTOOL.COM

12

Policy Verfication (Juns 14, 2012 12:17:19)(s) Summary @ 1 rows out of 1 | search xR
Status Name Verification Type Verification Technique Number of Policyls) Combination Algorithm Enforcement Algorithm Policy List
UpToDate Policy Verification (June 14, 2018 12:17:18) Standard Combined Policy 2 Deny-overrides Deny Biased ABAC:GradePolicy, ABAC:TAPolicy
Result{s) with selected verification (Policy Verification (lune 14, 2018 12:17:19)) @ Lrowsoutof 1 Search u; |§|
Requirement Schema Subject Resource Action Environment Condition Decision Verification Result
Test Case 2 TA=TA_One GradeBook = GradeBook_Three Any Envirenment=Anyivalle Permit FALSE

Policy(s) and Matching result against the selcted security requirement:

<@ 2 rows out of 2

| Search

| @

Sequence No

Paolicy Name

Rule Combination Algorithm

Policy Enforcement Algorithm

Combined Result

3. ABAC : GradeFolicy Deny-overrides Deny Biased Deny
2 ABAC : TAPolicy Deny-overrides Deny Biased Deny
Rulefs) and Matching result of Selected Policy against the selcted security requirement: 4@ S rows out of 9 | Search | ﬂ; Iﬁl
Seguence No Subject Resource Action Environment Condition Decision Inheritance Relation Match Result
1 Grad = GraduateStudent_A GradeBook = GradeBook_One UniActions = ViewGrade Permit Originated Not Applicable
2 Grad = GraduateStudent_A GradeBook = GradeBook_One UniActions = AssignGrade Deny Qriginated Not Applicable
3 Grad = GraguateStudent_A GradeBook = GradeBook_Two Deny Originated Not Applicable
4 Grad = GraduateStudent_B GradeBook = GradeBook_One Permit Originated Not Applicable
5 Grad = GraduateStudent_B GradeBook = GradeBook_One UniActions = AssignGrade Deny Qriginated Not Applicable
5 Grad = GraduateStudent_B GradeBook = GradeBook_Two Action Deny Originated Not Applicable
7 Grad = GraduateStudent_C GradeBook = GradeBook_Twa UniActions = ViewGrade Permit Qriginated Not Applicable
8 Grad = GraduateStudent_C GradeBook = GradeBook_Two UniActions = AssignGrade Deny Originated Not Applicable
a Grad = GraduateStudent_C GradeBook = GradeBook_One s Deny Originated Not Applicable

Fig. 22. GradePolicy: Match Results

Policy Verification (June 14, 2018 12:17:18)(s) Summary

<@ 1 rowsoutof 1

|m: &

Status Name Verification Type Verification Technique Number of Policy(s] Combination Algorithm Enforcement Algorithm Policy List
UpToDate Policy Verification (June 14, 2018 12:17:18) Standard Combined Policy 2 Deny-overrides Deny Biased ABAC:GradePolicy, ABAC.TAPolicy
Result(s) with selected verification (Policy Verification (June 14, 2018 12:17:19)) ® 1rowsoutof 1 search B
Requirement Schema Subject Resource Action Environment Condition Decision Verification Result
Test Case 2 TA=TA_One GradeBook = GradeBook_Three alue Any valug Permit FALSE

Policy(s) and Matching result against the selcted security requirement:

<@ 2 rows out of 2

| Search

@

Sequence No Policy Name Rule Combination Algorithm Policy Enforcement Algorithm Combined Result
1 ABAC : GradePolicy Deny-overrides Deny Biased Deny
2 ABAC : TAPolicy Deny-overrides Deny Biased Deny
Rule(s) and Matching result of Selected Policy against the selcted security requirement B & rows out of £ | Searchi -
Sequence No Subject Resource Action Environment Condition Decision Inheritance Relation Match Result

1 TA=TA One GrzdeBook = GradeBook_One UniActions = ViewGrade alus Permit Originated Not Applicable
z TA=TA One GrzdeBook = GradeBook_One UniActions = AssignGrads e Permit Originated Not Applicable
3 TA=TA_One GrzdeBook = GradeBock_Two Action = Any Value alus Deny Originated Not Applicable
4 TA=TA Two GradeBook = GradeBook_Two UniActions = ViewGrade alus Permit Originated Not Applicable
5, TA=TA Two GradeBook = GradeBook_Two UniActions = AssignGrads alus Permit QOriginated Not Applicable
6 TA=TA Two GradeBook = GradeBook_One Actian = Any Valus Deny Originated Naot Applicable

Fig. 23. TAPolicy: Match Results

11

RESOLVING THIS ERROR - TEST CASE 2 (NOT PROTECTED RESOURCE)

To eliminate a Not Protected Resource vulnerability the policy author would need to define a
specific rule for the unprotected resource (GradeBook_Three) and then test again to verify the
intended access decision is being made based on this new rule design.

For example, if we're to add this rule below to the TAPolicy...

WWW.SECURITYPOLICYTOOL.COM 13

TAPolicy: Add (1) New Rule:
(Rule No. = 7) — (TA = TA_One) — (Action = Any Value) — (Resource = GradeBook_Three) — decision = Permit

¥l TA=TA_One | GradeBook = GradeBook_Three | nction SAny Valds Enviranment= Anyvalue Candition = lus Permit Originated ‘ Permit

Fig. 24. TAPolicy: New Rule (7)

Then retest using the same Policy Verification selections as last time we will get the same False
Verification result due to our Algorithm selections. However, we can see in the Match Results
that we have provided a rule for the system to evaluate for TA_One accessing this Resource.

Result{s) with selected verification [Policy Verification [June 20, 2018 10:40:13)) @ 1rowsoutofl Search ﬂi 'E'
Requirement Schema Subject Resource Environment Condition Decision Verification Result
Test Case 2 TA=TA Ons GradeBook = GradeBook_Three. Permit FALSE
Policy(s) and Matching result against the selcted security reguirement; <> I rows out of 2 search ﬂg IF,l
Sequence No Policy Name Rule Combination Algorithm Policy Enforcement Algorithm Combined Result
T ABAC - GradePolicy Deny-overrides Deny Biased Deny
7 ABAC : TAPolicy Deny-overrides Deny Biased Permit
Rule(s) and Matching result of Selected Policy against the selcted security requirement: @@ 7 rows out of 7 Search HE Iﬁl
Sequence No Subject Resource Action Environment Condition Decision Inheritance Relation Match Result
& TA=TA One GradeBook = GradeBook_One UniActions = ViewGrade Permit Originated Not Applicable
2 TA=TA_One GradeBook = GradeBook_One UniActions = AssignGrade Permit Originated Not Applicable
3 TA=TA One GradeBook = GradeBook_Two Action = Any Value Deny Originated Not Applicable
4 TA=TA_Two GradeBook = GradeBook_Two UniActions = ViewGrade Permit Originated Net Applicable
s TA=TA Two EradeBook = GradeBook_Two UniActions = AssignGrade conditio T Permit Originated Not Applicable
s TA=TA_Two GradeBook = GradeBook_One 5 £ Cardition = Rk Nl Deny Originated Mot Applicable
77 TA=TA_One GradeBook = GradeBook_Three Action = AnyMalle Environment=AnyValue Condition =Anyalle Permit Originated Permit

Fig. 25. Updated Policy: Resource Now Protected

12 SETTING UP THE POLICIES — TEST CASE 3 (UNDECIDED RULE)

This university example contains two policies (GradePolicy & TAPolicy). The attributes in this
example have not been changed from previous Test Case 2. The Attribute/Attribute Values
included in these policies are as shown in Figure P8.

WWW.SECURITYPOLICYTOOL.COM

14

File Project Help
] e .= - o = dreptne, S| EER o - B -FE - EE -
e &apAana A D -0 & -& A & - B =filc}
:;j UniversityTestCase3.spt Q
;Saar(h UniversityTestCase3.spt P
[& universityTestCases spt
H ibute @ 5 rows out of 5
- Attribute Attribute
e o - - -
£ Subject Type Total Attribute(s) Total Attribute Valuels)
H =] Grad ; http://www w3 org/2001/XMLSchema#string Subject 2 5
GraduateStudent_A Resource 1 3
Action 1 z
GraduateStudent B N
aclaietrn Sub ects Envirenment] a
GraduateStudent_C ‘4— Canditian 7= p=
B @ TA ; http://www.w3.0rg/2001/XMLSchema#string
% TA_One
9 TA Two
1| Resource Inheritance ® 2 rows out of 2
=& GradeBook ; http://www.w3.0org/2001/XMLSchema#string
LT e e T—
- GradeBook_One
Subject Inheritance o
i Eiadedookilao Resource Inheritance a
L GradeBook_Three
=+ ¥4 Action
(=@ UniActions ; http://www.w3.0rg/2001/XMLSchemat#string Actions
1@ ViewGrade - T
i Access Centrol Modsl ® 3 rows outof 3
@ AssignGrade
Type Na of Policy(s)

E-- T Inheritance

- @ Envionment e ——— No Environments
& Conditon Wi No Conditions

ABAC

2

Multilevel

0

Workflow

0

1. &, Subject Inheritance

. & Resource Inheritance

Fig. 26. Test Case 3

13 MODELING YOUR PoLIicYy — TEST CASE 3 (UNDECIDED RULE)

Now that we have entered our attributes we can model our two policies (GradePolicy & TAPol-
icy). See the list below of the rules contained in each of these policies. You can open a “New
(blank) Project” and build these policies by entering the following rules below:

GradePolicy:

(Grad = GraduateStudent_A, ViewGrade, GradeBook_One) — Permit
(Grad = GraduateStudent_A, AssignGrade, GradeBook_One) —Deny
(Grad = GraduateStudent_A, Any Action, GradeBook_Two) —Deny
(Grad = GraduateStudent_A, ViewGrade, GradeBook_Three) —Permit
(Grad = GraduateStudent_A, AssignGrade, GradeBook_Three) —Deny
(Grad = GraduateStudent_B, ViewGrade, GradeBook_One) —Permit
(Grad = GraduateStudent_B, AssignGrade, GradeBook_One) —Deny
(Grad = GraduateStudent_B, Any Action, GradeBook_Two) —Deny
(Grad = GraduateStudent_B, ViewGrade, GradeBook_Three) —Permit
(Grad = GraduateStudent_B, AssignGrade, GradeBook_Three) —Deny
(Grad = GraduateStudent_C, ViewGrade, GradeBook_Two) —Permit
(Grad = GraduateStudent_C, AssignGrade, GradeBook_Two) —Deny
(Grad = GraduateStudent_C, Any Action, GradeBook_One) —Deny
(Grad = GraduateStudent_C, ViewGrade, GradeBook_Three) —Permit
(Grad = GraduateStudent_C, AssignGrade, GradeBook_Three) —Deny

TAPolicy:

(TA = TA_One, ViewGrade, GradeBook_One) —Permit
(TA = TA_One, AssignGrade, GradeBook_One) —Permit
(TA = TA_One, Any Action, GradeBook_Two) —Deny
(TA = TA_One, ViewGrade, GradeBook_Three) —Permit
(TA = TA_One, AssignGrade, GradeBook_Three) —Permit
(TA = TA_Two, ViewGrade, GradeBook_Two) —Permit
(TA = TA_Two, AssignGrade, GradeBook_Two) —Permit
(TA = TA_Two, Any Action, GradeBook_One) —Deny

WWW.SECURITYPOLICYTOOL.COM 15

After entering the rules above your modeled policies should look like the screenshots below. If
you did not create your own Project File, you can simply open Security Policy Tool — Project
File: UniversityTestCase3 and these policies will have been already created for you.

GradePolicy Policy(s) Summary <@ 1rowsoutofl Search ag |ﬁ|
Model Policy Name Rule Combination Algorithm Policy Enforcement Algorithm No. of Rule(s) Time Created Last Modified
ABAC GradePolicy Deny-overrides Deny Biased 15 June 14, 2018 11:54:11 June 14, 2018 11:.54:11
Rule () defined with selected policy (GradePolicy) <& 15 rows out of 15 search =l
Sequence No Subject Resource Action Environment Condition Decision Inheritance Relation
1 Grad = GraduateStudeni_a GradeBook = GradeBook_One UniActions = ViewGrade R Permit Qriginated
2 Grad = GraduateStudent_A GradeBook = GradeBook_One UniActions = AssignGrade Deny Originated
3 Grad = GraduateStudent_A GradeBook = GradeBoak_Two Action = Any Valie Deny Originated
4 Grad = GraduateStudent_B GradeBook = GradeBook_One UniActions = ViewGrade Permit Qriginated
s Grad = GraduatsStudent B GradeBook = GradeBock_One UniActions = AssignGrade Deny Originated
6 Grad = GraduateStudent_B GradeBook = GradeBook_Two Action = A alue Deny Originated
7 Grad = GraduateStudent_C GradeBook = GradeBook_Two UniActions = ViewGrade Permit Originated
8 Grad = GraduateStudent_C GradeBook = GradeBook_Two UniActions = AssignGrade Deny Originated
9 Grad = GraduateStudent_C GradeBook = GradeBook_One ction = Any Valus Deny Qriginated
10. Grad = GraduateStudent_A GradeBook = GradeBook_Three UniActions = ViewGrade Permit Originated
11 Grad = GraduateStudent_A GradeBook = GradeBook_Three UniActions = AssignGrade Deny Originated
12 Grad = GraduateStudent_B GradeBook = GradeBook_Three UniActions = ViewGrade Permit Qriginated
13 Grad = GraduatsStudent_B GradeBock = GradeBook_Three UniActions = AssignGrade Deny Originated
14 Grad = GraduateStudent_C GradeBook = GradeBook_Thres UniActions = ViewGrade Permit Originated
15 Grad = GraduateStudent_C GrzdeBook = GradeBook_Thres UniActions = AssignGrade Deny Originated
Tapolicy Policy(s] Summary @ 1rows outof 1 casiehi = o
Model Palicy Name Rule Combination Algarithm Palicy Enforcement Algarithm Ne. of Rulels) Time Created Last Modified
ABAC TAPolicy Deny-overrides Deny Biased g June 14, 2018 11:57:50 June 14,2018 11:57:50
Rule (s) defined with selected policy (TAPalicy) ® B rows out of 8 search | B8
Seguence No Subject Resource Action Environment Condition Decision Inheritance Relation
1 TA=TA_One GradeBook = GradeBook_Dne UniActions = ViewGrade Permit Originated
2 TA =TA_One GradeBook = GradeBook_One UniActicns = AssignGrade Permit Originated
3 TA=TA_Cne GradeBook = GradeBaok_Two Action = Any Valus Deny Originated
4 TA=TA Two GradeBook = GradeBook_Two UniActions = ViewGrade Permit Originated
5 TA=TA_Two GradeBock = GradeBook_Two UniActions = AssignGrade Permit Originated
6 TA=TA_Two GradeBook = GradeBook_One Action = A alus Deny Originated
7 TA=TA_One GradeBook = GradeBook_Thres UniActions = ViewGrade Permit Originated
8 TA=TA_Dne GradeBook = GradeBook_Three UniActions = AssignGrade Permit Originated

Fig. 28. TAPolicy

14 INDIVIDUAL SECURITY REQUIREMENTS - TEST CASE 3 (UNDECIDED RULE)

The final step before analyzing these policies for errors is to create individual security require-
ments to use for testing. If you are building a “New (blank) Project” on your own you will enter
the following security requirement below:

Individual Security Requirement:
(TA = TA_Two) & (Action = ViewGrade) & (GradeBook = GradeBook_Three) —decision = Permit

After entering the rule above your individual security requirement should look like the screen-
shot below. If you did not create your own Project File you can simply open Security Policy
Tool — Project File: UniversityTestCase3 and this requirement will have been already created for
you.

WWW.SECURITYPOLICYTOOL.COM 16

Test Case 3(s) Summary ® 1 rows outof 1 Search =l
Access Control Security Reguirement Requirement Schema Mo. of Security Requirementi(s)
Individual Test Case 3
e S o oubaf -
Security Requirement (s) defined under selected Requirement Schema (Test Caze 3): @ 1rowsoutofl Search ﬂa L=
Sequence No Subject Resource Action Environment Condition Decision
TA=TA_Two GradeBook = GradeBook_Three UniActions = ViewGrade Environment = Any Va Con = alue Permit

Fig. 29. Individual Security Requirement

15 PoLICY VERIFICATION/ANALYZING RESULTS - TEST CASE 3 (UNDECIDED RULE)

Now that we are ready to test our policies let’s discuss the error we will be looking at in this
third example. When policies are designed there is potential for an “Undecided Rule” error being
created. An Undecided Rule error occurs when your policy contains rules that are not entirely
defined or are missing a step.

For example, when the policy author was designing the logic for these university policies; the au-
thor created rules for all Subjects to access “GradeBook_Three” but did not define access rules for
TA = TA_Two. In this situation, if TA_Two were to attempt to take action on “GradeBook_Three,”
the system would be forced to make a default decision instead of a defined decision. This may
create a security vulnerability due to your system’s default evaluation decision being different
than what you previously intended. Similar to the “Not Protected Resource” example previously,
this error is caused due to the author missing rules. It is not caused due to flawed interpretation
of existing rules contained in either of our policies as was the case in Test Case 1 (Rule Conflict).

Next, we will run one “Combined Policy” Verification to reveal the Undecided Rule error that
is present in our policies. To do this, we will select Test Case 3 (security requirement) and
GradePolicy & TAPolicy as a Combined Policy Verification and analyze our verification result.
Again, this will have already been done for you if you open Project File: UniversityTestCase3.

= : e Wi 18 S I =
Policy verification (Juns 14, 2018 12:28:55)(s) Summary @ lrowsoutorl Search ﬂ§ =

Status Name Verification Type werification Technique Number of Policy(s) Combination Algorithm Enforcement Algorithm Policy List [¢]

UpToDate Policy Verification (June 14, 2018 12:28:55) Standard Combined Policy 2 Deny-overrides Deny Biased ABAC:GradePolicy, ABAC:TAPolicy

Jina s -
Result(s) with selected verification (Policy Verification (June 14, 2018 12:28:55])) @ 1rowsoutofl Search ui =

Subject Resource Actien Environment Condition Decision Verification Result (el

TA=TA_Two GradeBook = GradeBook_Three UniActions = ViewGrade : e : nditio Permit FALSE -

Fig. 30. Combined Policy x Test Case 3

Like we did in the “Not Protected Resource” example, by clicking on the Verification Result we
can analyze deeper the reasoning for the “False” result we have received. Here is where we
would notice we have not created any Rules that are attached to Subject = TA_Two taking
action on Resource = GraduateBook_Three. We can see this by noticing that every “Match
Result” is “Not Applicable” whereas if there were Rules existing for TA_Two and Resource
= GraduateBook_Three we would have at least seen one Rule with a (Permit or Deny) Match
Result.

WWW.SECURITYPOLICYTOOL.COM

17

Policy Verfication (Juns 14, 2018 12:28:55)(s) Summary @ 1 rows outof 1 | Search | R
Status Nams Werification Type Verification Technique Number of Policyis) Combination Algorithm Enforcement Algorithm Policy List
UpToDate Policy Verification (June 14, 2018 12:28:55) Standard Combined Policy 2 Deny-overrides Deny Biased ABAC:GradePolicy, ABAC:TAPolicy
Result(s) with selected verification [Policy Verification (lune 14, 2018 12:28:55}) ® Lrowsoutofl | search | @38 &
Requirement Schema Subject Resource Action Environment Condition Decision Verification Result
Test Case 3 TA=TA Two GradeBook = GradeBook_Thres UniActions = ViswGrade Permit FALSE
Policy(s) and Matching result against the selcted security requirement: <@ 2 rows out of 2 Search | E Im
| |
Sequence Mo Policy Mame Rule Combination Algorithm Policy Enforcement Algorithm Combined Result
3. ABAC : GradeFolicy Deny-overrides Deny Biased Deny
2 ABAC : TAPolicy Deny-overrides Deny Biased Deny
. T 1
Rule(s) and Matching result of Selected Policy against the selcted security requirement ® 15 rows out of 15 search | -
Seguence No Subject Resource Action Environment Condition Decision Inheritance Relation Match Result
1 Grad = GraduateStudent_A GradeBocok = GradeBook_One UniActions = WiewGrade Permit Originated Not Applicable
2 Grad = GraduateStudent_A GradeBook = GradeBook_One UniActions = AssignGrade Deny Originated Mot Applicable
3 Grad = GraduateStudent_A GrzdeBook = GradeBook_Two ¥ Valus Deny Originated Not Applicable
4 Grad = GraduateStudent_B GradeBock = GradeBook_One UniActions = WiewGrade Permit Originated Not Applicable
5 Grad = GraduateStudent_B GradeBock = GradeBook_One UniActions = AssignGrade Deny Originated Not Applicable
6 Grad = GraduatsStudent_B GrzdeBook = GradeBook_Two alue Deny Originated Not Applicable
7 Grad = GradusteStudent_C GrzdeBook = GradeBook_Two UniActions = WiewGrade Permit Originated Not Applicable
8 Grad = GradusteStudent_C GradeBook = GradeBook_Two UniActions = AssignGrade Deny Originated Not Applicable
El Grad = GraduateStudent_C GrzdeBook = GradsBook_One Value Deny Originated Not Applicable
10 Grad = GradusteStudent_A GrazdeBook = GradeBook_Thres UniActions = WiewGrade Permit Originated Not Applicable
11 Grad = GradusteStudent_A GradeBook = GradeBook_Thres UniActions = AssignGrade Deny Originated Not Applicable
hiv Grad = GradusteStudent_B GradeBook = GradeBook_Three UniActions = ViewGrade Permit Originated Not Applicable
13 Grad = GradusteStudent_B GradeBook = GradeBook_Three UniActions = AssignGrade Deny Originated Not Applicable
14 Grad = GradusteStudent_C GradeBook = GradeBook_Three UniActions = WiewGrade Permit Originated Not Applicable
15 Grad = GraduateStudent_C GradeBook = GradeBook_Three UniActions = AssignGrade Deny Originated Mot Applicable
i £ [|
Policy Verification (June 14, 2018 12:28:55)(s) Summary <@ 1 rowsoutof1 | Search | xR
Status Nams Werification Type Verification Technique Number of Policyis) Combination Algorithm Enforcement Algorithm Policy List
UpToDate Policy Verification (June 14, 2018 12:28:55) Standard Combined Policy 2 Deny-overrides Deny Biased ABAC:GradePolicy, ABAC:TAPolicy
Result(s) with selected verification [Policy Verification (lune 14, 2018 12:28:55}) ® Lrowsoutofl | search | @38 &
Requirement Schema Subject Resource Action Environment Condition Decision Verification Result
Test Case 3 TA=TA Two GradeBook = GradeBook_Thres UniActions = ViswGrade Permit FALSE
Policy(s) and Matching result against the selcted security requirement: <@ 2 rows out of 2 Search | E Im
| |
Sequence Mo Policy Name Rule Combination Algorithm Policy Enforcement Algorithm Combined Result
1 ABAC : GradePolicy Deny-overrides Deny Biased Deny
7 ABAC : TAPolicy Deny-overrides Deny Biased Deny
. T 1
Rulefs) and Matching result of Selected Policy against the selcted security requirement: <@ B rows cut of 8 Search | ﬂ; I!I
Sequence Mo Subject Resource Action Envirenment Condition Decision Inheritance Relation Match Result
1 TA=TA One GradeBook = GradeBook_One UniActions = ViewGrade Permit Originated Not Applicable
2 TA=TA One GradeBook = GradeBook_One UniActions = AssignGrade Permit Originated Not Applicable
3 TA=TA One GradeBook = GradeBook_Two Action = Any Valus Deny Originated Not Applicable
4 TA=TA_Two GradeBook = GradeBook_Two UniActions = ViewGrade Permit Originated Not Applicable
5 TA=TA Two GradeBook = GradeBook_Two Unifctions = AssignGrade Permit Originated Not Applicable
6 TA=TA Two GradeBook = GradeBook_One Deny Originated Not Applicable
7 TA=TA One GradeBook = GradzBook_Three Permit Originated Not Applicable
3 TA=TA_One GradeBock = GradeBook_Three UniActions = AssignGrade Permit Originated Not Applicable

Fig. 32. TAPolicy: Match Results

As you can see there has not been a rule defined for TA_Two — Action — GraduateBook_Three
which is known as an Undecided Rule error.

WWW.SECURITYPOLICYTOOL.COM 18

16 RESOLVING THIS ERROR - TEST CASE 3 (UNDECIDED RULE)

To solve this error, the policy author would need to define specific rules for all subject attributes
(e.g., include TA_Two) in any policies that determine TA access requests to GraduateBook_Three.

For example, adding these rules below to the TAPolicy for our specific example. ..

TAPolicy: Add (2) New Rules:
(Rule No. = 9) — (TA = TA_Two) — (Action = ViewGrade) — (Resource = GradeBook_Three) — decision = Permit
(Rule No. = 10) — (TA = TA_Two) — (Action = AssignGrade) — (Resource = GradeBook_Three) — decision = Permit

Originated |

UniActions = ViewGrade ‘ £ srment = alus ‘ condition = Any Value | Permit ‘
Originated |

| s \
Permit ‘

TA=TA Two |
TA=TA Two |

GradeBook = GradeBock_Three ‘
GradeBook = GradeBook_Three ‘

UniActions = AssignGrade ‘ E onmEnt = 4 ‘ condition = Any Value |

Fig. 33. TAPolicy: New Rules (9,10)

Now, looking out our Verification results and Match Results we will see that we no longer have
an “Undecided Rule” error occurring. The Verification Result is still “False” due to our choices
in our Combination Algorithm = Deny-overrides and Enforcement Algorithm = Deny Biased.

For example, GradePolicy has no rules related to the security requirement (TA_Two — View-
Grades — GradeBook_Three) we are using for testing which is why see all Match Rules =
Not Applicable. Due to our selection to use Deny Biased for our Enforcement Algorithm the
“Combined Result” for GradePolicy = Deny. However, in the case of the TAPolicy we have
the Combined Result = Permit due to the new rules we added (e.g., see new Rule 9 below).
Hence, we have opposing Combined Results (GradePolicy = Deny; TAPolicy = Permit). Finally,
the Combination Algorithm = Deny-overrides makes a definitive answer for our Verification
Results. The Deny-overrides selection overrules the Permit result from the TAPolicy in favor of
the Deny result from the GradePolicy to make the final Verification Result = False.

Policy Verification (June 20, 2018 11:14:24)(s) Summary @ 1 rows out of 1 Search 0 s
Status Name Verification Type Verification Technigue Number of Policy(s) Combination Algorithm Enforcement Algorithm Policy List
UpToDate Policy Verification (June 20, 2018 11:14:24) Standard Combined Policy 2 Deny-overrides Deny Biased ABAC:GradePolicy, ABAC:TAPolicy
Result(s) with selected verification (Policy Verification (June 20, 2018 11:14:24)) @ 1rowsoutof1 Search u; lﬁ'
Reguirement Schema Subject Resource Action Environment Condition Decision Verification Result
Test Case 3 TA=TA Two GradeBook = GradeBook_Three UniActions = ViewGrade Permit FALSE
Policy(s) and Matching result against the selcted security requirement: & 2 rows out of 2 Search =]
Sequence No Policy Name Rule Combination Algorithm Policy Enforcement Algorithm Combined Result
1 ABAC : GradePolicy Deny-overrides Deny Biased Deny
2 ABAC : TAPolicy Deny-overrides Deny Biased Permit
Rulefs) and Matching result of Selected Policy against the selcted security requirement: ® 10 rows out of 10 Search ﬂE IF;I
Sequence No Subject Resource Action Environment Condition Decision Inheritance Relation Match Result
1 TA=TA One GradeBook = GradeBook_One UniActions = ViewGrade Permit Originated Not Applicable
2 TA=TA One GradeBook = GradeBook_One UniActions = AssignGrade Permit Originated Not Applicable
3 TA=TA_One GradeBook = GradeBook_Two Action = Ay Va Deny Originated Not Applicable
4 TA=TA Two GradeBook = GradeBook_Twe UniActions = ViewGrade Permit Originated Not Applicable
s TA=TA Two GradeBook = GradeBook_Two UniActions = AssignGrade Permit Originated Not Applicable
s TA=TA_Two GradeBook = GradeBook_One e Deny Originated Not Applicable
7 TA=TA One GradeBook = GradeBook_Three UniActions Permit Originated Not Applicable
g TA=TA_One GradeBook = GradeBook_Three UniActions = AssignGrade Permit Originated Not Applicable
9 TA=TA Two GradeBook = GradeBook_Three UniActions = ViewGrade Permit Originated Permit
10 TA=TA Two GradeBook = GradeBook_Three UniActions = AssignGrade Permit Originated Not Applicable

Fig. 34. Updated Results: No Undecided Rule

WWW.SECURITYPOLICYTOOL.COM 19

17 CONCLUSION

Now you should have a better understanding of what to look for as you go onto verify your
access control policies with Security Policy Tool. In addition to this document there are other
resources located in the Learning Center in your My account page that will help you start
leveraging Security Policy Tool to prevent access control leaks, today!

If you have not yet, download Security Policy Tool — Lite Version for FREE now! Close the door
the Access Control Leaks and save time and cost creating, modeling, testing, and verifying your
access control policies, today.

Click here to begin securing your policies now — Life_Version.

InfoBeyond Technology, LLC is an innovative company specializing in Network, Machine Learning and Data
Security within the Information Technology industry. The mission of InfoBeyond is to research, develop, and
deliver viable software products for network communication and security. Some of our research is sponsored by
Department of Defense, Department of Energy, Missile Defense Agency, Department of Transportation, NIST
INFOBEYOND (National Institute of Standards and Technology), etc. Security Policy Tool is Awarded the 2017 Innovative Se-
" x/ curity Solution Award at the 2017 Big Data and SDN/NFV Summit. NXdrive is a fragment-based cybersecurity
storage system and more information can be found at www.NXdrive.com. The company is featured as one of
50 fast growth IT small businesses in 2017 by The Silicon Review.

https://www.securitypolicytool.com/demo

