Security Policy Tool User Manual

InfoBeyond Technology LLC
August 15, 2017

A Comprehensive Implementation of NIST SP 800-192|and XACML 2.0/3.0

for Access Control Policy Composition, Analysis, Tests, Leak Inspection, and Verification

Dedicated to Policy Authors, A.K.A., Policy Composer, and Cybersecurity Specialist

Web: www.SecurityPolicyTool.com
E-mail:Info@InfoBeyondtech.com

Version 1.0.1

www.InfoBeyondtech.com
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-192.pdf
www.Securitypolicytool.com
mailto:Info@InfoBeyondtech.com

Contents

[I__Prefacel 4
[LI_AccessControl Flawsl o 4
(1.2 NIST's Specification| 4
(1.3 About the Security Policy Tool| 4
(.4 TheUseofthe Manuall 5

6

3 ACPT vs. SPT 8

4 Acknowledgement| 9

10
[5.1 Policy and Attribute|. 10
0.2 Condition| 11
0.3 Inheritancel 13
[5.4 ACAlgorithm| 14

[5.4.1 Combining Algorithm| 14
[5.4.2 Policy Enforcement Algorithm|. 16
BS ACModelsl 16
BT _ABAC.ot 16
[5.5.2 MultlLevel Security Model| 00 17
.53 Workflow Modell 18
5.6 XACMLI. e 19

6 Policy Tests and Analysis| 20
[6.1 General Testing Procedurel 20
[6.2 AC Security Requirement| o 21
6.3 Policy Tests| 22

[6.3.1 Single vs. Multiple Policy Verification|. 23
[6.3.2 Merged Policy Verification|o 24
[6.3.3 Combined Policy Verification| 25
[6.3.4 Merged Policy Separationof Duty| 26
[6.3.5 Combined Policy Separationof Duty| 27
[6.3.6 Access Privilege Preview|. o o000 27
[6.4 Policy Analysis and Typical ACFlaw| 29
[6.5 Consideration of Multiple Policies| 30

[/ Operational Guide| 32
(/1 _SPT Installation| 32
(/.2 Project Main Interface| o 33
(/.3 NeworOpenanProject|. 33
[/.4 SavingaProjectl e 34
[7.5 Add/Update/Delete Attributes and Attribute Values| 34

Copyright ©InfoBeyond Technology, LLC Page 2

[7.5.1 Attribute Composition| Lo 34

(/5.2 Attribute Valuesl 37

[.6 Conditionl 39
[7.7 Subject/Resource Inheritance Composition|. 40
[7.8 ABAC Model Composition|, 44
[7.9 Multilevel Security Model Composition| 50
(.10 Workflow Modell 54
[7.11 Access Control Security Requirement| 56
[/.11.1 Individual Security Requirement| 57
[7.11.2 Separation of Duty Security Requirements|. 60
[/.11.3 Combinatorial Test Suitel 63

[7.12 Policy Testing and Analysis|. 66
[7.12.1 Integrity and Consistence Check] 66
[7.12.2 Testing Policy and Method Configuration| 68
[7.12.3 Single Policy Verification| 69
[7.12.4 Merged Policy Verification| 72
[7.12.5 Combined Policy Verification| 76
[/.12.6 Separationof Duty| 81
[7.12.7 Subject Access Privilege Preview| 86
[7.12.8 Resource Access Privilege Preview| 89
I3 XACML Functions]« .o it 93
[7.13.1 XACML Policy Converter] 94
[7.13.2 XACML Policy Import] 95

olicy Editing] 96

8 Access Control System Implementation| 101
9 References| 102

Copyright (©InfoBeyond Technology, LLC Page 3

1 Preface

1.1 Access Control Flaws

Access control (AC) protects the secret financial, enterprise, organization, healthcare, defense, and
various IT resources/services in an online system. In order to protect the classified resources, the
security specialist needs to compose a set of AC policies (e.g., in XACML policies) to prevent
unintended access. However, the current AC policies are composed and deployed into an AC sys-
tem without comprehensive security tests and verifications. This results in many AC flaws (e.g.,
information or service leaks) in the systems and these AC flaws are normally hidden from us until
observable damages (e.g., secret data leakage) are caused.

More specifically in a complex system, it is really a challenge to compose a multitude of poli-
cies with a number of rules to prevent AC flaws. These AC flaws [1] could be unintentionally
opened to external cybersecurity attackers as well as the insiders. Particularly, misconfigured and
fault policies, as well as error policy combining algorithms, could result in unexpected AC leaks
that again cause serious economic and political consequence. In the last decade, we have been
witnessing many cybersecurity incidents (e.g., large-scale data breaches, WikilLeaks), due to the
misconfiguration of AC policies instead of the failure of cryptographic primitives or protocols.

1.2 NIST’s Specification

NIST has released several specifications in order to help government and enterprises to enhance
the nation’s critical access control security. Some of these specifications are:

e NIST SP 800-192: Verification and Test Methods for Access Control Policies/Models [2],
e NIST IR 800-7874: Guidelines for Access Control System Evaluation Metrics [3], and

e NIST SP 800-162: Guide to Attribute Based Access Control (ABAC) Definition and Con-
siderations [4].

e NIST IR 7316: Assessment of Access Control Systems [5].

As stated by NIST, many of the access control incidents (e.g., data breaches, insiders) are caused by
misconfigured access control policies. These specifications describe the AC security requirements
to avoid these incidents and recommend to thoroughly and automatically check the syntactic and
semantic faults of AC policies before deploying them for operation [6].

1.3 About the Security Policy Tool

Since 2007, professors, scientists, and national security experts have been pursuing a method to
detect the AC flaws from the AC policies. Security Policy Tool (SP7T) is such a tool to meet the
need to compose, test, and validate the AC policies in an attempt to ensure there are no AC leaks
when the policies are deployed in a system. By SP7T tests, the AC policies can be effectively
analyzed by a policy author to find unintended accessibility. With the identification of the fault

Copyright (©InfoBeyond Technology, LLC Page 4

and unintended policies, the policy author can fix the policies or rules to exclude the AC vulnera-
bilities. For such a purpose, SP7T has many analyzing functions for the policy author to find the
correlations among the rules and the AC accessibility. In addition, SP7T offers the functions to
conveniently compose AC models. It also contains a state-of-art XACML editor for graphical and
text integrated policy editing.

SPT incorporates all the functions in the NIST’s ACPT (Access Control Policy Tool) [7] with
significant enhancements and advanced extension in terms of usability and functionalities. It is
an comprehensive implementation of the NIST specifications [2-5], especially the NIST’s SP 800-
192 - |Verification and Test Methods for Access Control Policies/Models. It also is compatible
with XACML 3.0 policy models in a framework of PEP (Policy Enforcement Point), PDP (Policy
Decision Point), PIP (Policy Information Point), and PAP (Policy Administration Point). Due to
these security policy compliances, SPT satisfies the policy testing and analyzing requirements for
the state-of-art AC systems as well as the legacy AC systems.

1.4 The Use of the Manual

SPT for AC policy test and analysis is targeted for the AC policy authors, as known as policy
developer or policy composer, AC software developers, IT AC security managers, cybersecurity
specialists, or other professionals in the performance of AC systems. It can be used for enhancing
the AC security of (i) IT, IoT, Cloud, Telecom, Data Center, Telecom infrastructure, Device/Service
Control Systems, (ii) Government, Defense, National Cybersecurity Systems, (iii) Transportation
& Logistics Resource Access Systems, (iv) BFSI (Banking, Financial Services and Insurance)
Systems, (v) Healthcare, Chemical/Pharma, Manufacturing and Ultilities Access Control Systems,
(vi) Organization, University, Education Control Systems, Retail, Oil, Gas & Energy Cyberse-
curity Control Systems, (vii) Hospitality & Residential Access Control Systems, (viii) Computer
Networks and Remote Controls, and other Access Control Systems.

Copyright (©InfoBeyond Technology, LLC Page 5

https://www.nist.gov/programs-projects/access-control-policy-tool-acpt
https://beta.csrc.nist.gov/News/2017/NIST-Release-SP-800-192
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

2 Summary

Security Policy Tool (SP7T) enables powerful AC testing and analyzing functions such that the
policy authors can validate and fix the faulty, unintended, misconfigured policies. This ensures
there are no security flaws (e.g., AC leaks) when the policies are deployed in a system. It has the
following key functionalities:

e Security Model and Policy Editing: SP7 has user-friendly GUI (Graphic User Interface)
for you to conveniently compose/edit AC Attributes (Subject, Resource, Action, and En-
vironment), Conditions, Rules, Policies, and algorithms. AC model templates, e.g., ABAC
(Attributed-based Access Control), MLS (Multilevel Security), and Workflows, are provided
for systematically policy editing, modification, and updating. Policy inheritance allows the
policy authors to effectively compose and manage the policies for a large hierarchical orga-
nization.

e Policy Testing: SP7T presents rich functions for comprehensive policy tests to verify the
AC policies against your desirable security requirements. Giving the security requirements,
one or a set of policies can be tested for policy leakage discovery:

— Merged Policy Verification,

— Combined Policy Verification,

— Merged Policy Separation of Duty, and
— Combined Policy Separation of Duty

These tests support all rule combination algorithms such as First Applicable. Combinato-
rial tests allow you to automatically generate the test suite to achieve a testing coverage,
corresponding to an approximate flaw detection percentage. User-friendly GUI presents the
testing results by tables and identifies the internal correlations to reflect the testing results in
connection with the rules or policies.

e Policy Analyzing and Verification: SP7 enables a policy author to analyze the rules and
policies of their AC authentication consequences in responses to the various AC requests.
Potential security vulnerabilities in the policies could be detected in order to prevent AC
flaws before these policies are deployed. AC Separation of Duty/Conflicts of Interest can
be identified by analyzing the testing results. From the analysis, the policy author can fix
the problematic policies with new tests and analysis till the intended AC security goal is
achieved.

¢ XACML (eXtensible Access Control Markup Language) Converter and Editor: SPT
can automatically input and convert XACML 2.0/3.0 documents into AC models in SPT
data format. It further has an XACML 3.0 editor to reduce the mistakes caused by policy
manually editing. It is able to automatically convert the SP7T data into XACML 3.0 policy
format and output it for portability.

In addition to the above functions, typical policy AC errors are described and showcase these
errors from the policy tests and analysis. In addition to find the AC leaks, SP7T reduces the policy

Copyright (©InfoBeyond Technology, LLC Page 6

deployment and maintenance cost. It is convenience to process a large number of rules (e.g.,
hundreds of rules or more) and policies.

Copyright (©InfoBeyond Technology, LLC Page 7

3 ACPT vs. SPT

Thanks NIST for the ACPT [7] research and development. Please visit NIST website for more in-
formation. ACPT is a prototype implementation. It has attracted a number of users and meanwhile
received numerous feedbacks from these users. Upon the NIST’s support, SP7T is developed as a
commercial tool that addresses the functional limitations in the ACPT. It meanwhile considers the
users’ feedbacks for new functions. SP7T is highly superior to ACPT in the following aspects:

¢ Efficiency and Capabilities: SP7T refines the AC models (e.g., ABAC) to offer AC policy
verification efficiency and capabilities. For example, ACPT has a limited model checking
engine and SPT enhances this engine for improving the model checking capability.

¢ Security and Compatibility: SP7T offers comprehensive AC security verification features.
It includes all XACML 3.0 policy/rule combining algorithms. SP7T enables powerful pol-
icy analysis to detect the policy AC flaws as specified in the NIST SP 800 192. All these
functions are limited in ACPT.

e XACML, Flexibility, and Usability: SP7 should enable XACML import and export in
support of mandatory and optimal XACML features. SP7T is flexible and convenient for
policy authors to perform the test and review the results flexibly. It has the functions for
policy author to easily inspect the AC flaw and fix them.

SPT evolves as a powerful tool in order to signify the user’s values as a consequence of policy
verifications. At first, SP7T makes it really different for the AC security with and without policy
verification. Secondly, SP7T significantly reduces the cost and time efforts for AC policy devel-
opment, deployment, managements, and maintenance. Furthermore, it is robust and powerful for
complicate AC systems with a number of AC rules and policies. Due to rich and powerful func-
tions, SPT is a dispensable tool for policy authors to develop, test, and verify AC policies for
worry-free AC flaws.

Copyright (©InfoBeyond Technology, LLC Page 8

https://www.nist.gov/programs-projects/access-control-policy-tool-acpt

4 Acknowledgement

Thanks are expressed to the NIST (National Institute of Standards and Technology), Department
of Commerce, and the National Small Business Administration. The R&D of the Security Pol-
icy Tool is sponsored by NIST through a SBIR (Small Business Innovation Research) program
(2015-2018). From the SBIR Phase I and II program, Security Policy Tool has been successfully
developed as a commercial version of the NIST’s ACPT (Access Control Policy Tool). More
specifically, ACPT is a prototype of Proof of Concept for rich policy testing functions. With our
efforts, Security Policy Tool substantially enhances and expands the NISTs ACPT design with
many advanced and user-friendly features for achieving high-security confidence AC levels. For
example, Security Policy Tool provides many policy analyzing functions that allow a policy author
to inspect the potential security leaks over a large number of policies and rules. Furthermore, Se-
curity Policy Tool is a user-friendly, robust, efficient, professional, and functionally powerful AC
security policy tool.

We would like to thank Dr.Vincent Hu who gave us tremendous technical consultant for the Se-
curity Policy Tool technology. Appreciation should be also presented to many NIST’s Computer
Security Resource Center experts of this matter. We would like to extend our sincere gratitude to
many other SBIR staffs for their efforts to ensure the success of the tool.

Copyright (©InfoBeyond Technology, LLC Page 9

5 Concept

SPT follows the general AC concept defined in NIST 7316 Specification [1] and XACML 3.0
[2]. According to NIST 7316, Access Control Policy (i.e., Policy for simplicity) carries the AC
requirements that specify how the access is managed and who may access information under what
circumstances. It may pertain to resource and service protection within or across organizational
units or may be based on need-to-know, competence, authority, obligation, or conflict-of-interest
factors. More specifically, XACML 3.0 defines a policy as a set of rules with rule-combining
algorithms to describe the AC requirements. Terms used in SP7T can be categorized into:

o XACML: SPT has the same terms defined in XACML 3.0. These terms are Access Control,
Action, Attribute, Condition, Decision, Environment, Policy, Policy Combining Algorithm,
Predicate, Resource, Rule, Rule-combining Algorithm, Subject, etc. Please refer XACML
3.0 for these terms if they are not covered in this manual.

e Inheritance: SP7 defines several inheritance terms to model the AC relationships such as
originator, beneficiary, subject inheritance, and object inheritance.

e AC Model: SPT considers three types of AC models that are ABAC (Attribute-based Ac-
cess Control), Multilevel Security Model, and Workflow.

e Policy Test: For policy testing and analysis, SP7 defines Security Requirement, Separation
of Duty, Conflict of Interest, Merged Policy Verification, and Combined Policy Verification.

This section describes the fundamental concept and terms related to the AC policy test and analysis
in SPT software tool. Figure [I] shows an example of a partial Emergency Hospital Organization
Chart and we will use it for AC policy demonstration.

5.1 Policy and Attribute

A policy is a statement to guide the decision of an access request in attempt to achieve a rational
decision, i.e., Permit and Deny. Decisions determined from policies could be intended (i.e., ex-
pected) or unintended (i.e., AC flaw) in terms of AC security requirements. If an intended Deny
is granted with Permit unintentionally, an AC leak of the corresponding resource occurs. A policy
consists of rule(s) described by a collection of attributes in a logical way. As defined in XACML
3.0, an attribute is the characteristics of a Subject, Resource, Action, or Environment:

e Subject Attributes: Subject attributes describe the actor (e.g., a user or a software agent) in
an attempt to access, characterized by age, clearance, department, role, job title, etc.

e Resource Attributes: Resource attributes describe the object being accessed e.g., data and
resources (e.g., medical record, and bank account), services provided in the AC system, and
other system components, e.g., a device.

e Action Attributes: Action attributes describe the action being attempted, e.g., read, delete,
view, approve, etc.

Copyright (©InfoBeyond Technology, LLC Page 10

[N

LEva R. Sergio, Chief of Hospita)

[AdministrationServices} [Nursing Services } [Medical Services }
Rianie, C. Jasam, Head
Nurse

))

(oot
Emergency Room Out-patient Department
E J L y)

| Midwife |
[Nourses —NEED — Layla Allen)

(Marivic E. Trinidad)% %{ Helen Moore)
—(

(Arnie C Labrador P ;K Emma C Martinez)

Harper Lee
(AiceD. Amemita —— —(Riley Lewis) 4()
—PC Hailey Walker)

Lily Hernandez)

Figure 1: An Example of Organization Chart - Nursing Service

e Environment Attributes: Environment attributes describes the environment relevant to an
authorization decision and they are independent of a particular subject, resource, or action.
The environment attributes are generally used to specify the time, location, system status, or
other dynamic aspects of the AC scenarios.

All attributes have a Name, Data type, and one or more attribute Values. For the example in Figure
[l Role can be defined as a subject attribute name with a string data type that has the attribute
values: Chief of Hospital, Nurse, Midwife, and Nursing Attendant. Further, Resource, such as
Patient Record (Data type - string, Values - Prescription, Medical Record, Personal Information)
can be defined for the hospital resource attributes. Similarly, Action, such as CRUD (e.g., Create,
Read, Update, Delete), can be defined as an Action attribute for the hospital example in Figure
[[l One can define as many attributes as desired for a real AC system. However, the definition
only supports up to one level of classification for the attributes. An attribute is the root and it can
only have one level of children for its attribute values as shown in Figure 2] Figure2](a) show the
correct attribute definition while Figure |Z| (b) is incorrect. Figure |Z| (b) shows two-level of attribute
values, which is not allowable in SPT and XACMAL standard.

5.2 Condition

XACML 3.0 defines the condition as a function (i.e., an expression of a predicate) that evalu-
ates to True or False or Indeterminate. Conditions only exist in rules. Conditions are essen-

Copyright (©InfoBeyond Technology, LLC Page 11

Correct Incorrect

ﬁ .
Subject Subject

Attribute Value:

Attribute Value: Attribute Value: Nurse
Nurse, Midwife, Emergency Room,
etc. Out-patient, etc.

Figure 2: Correct Way to Use Attribute

tially an advanced form of a target which can use a broader range of functions and more im-
portantly can be used to compare two or more attributes together. For example, we can define
Is_login permit from 09 : 00 : 00 am to 05 : 00 : 00 pm as a condition with the possible
evaluation of True or False or Indeterminate. Indeterminate means the condition is unable to be
evaluated, e.g., an error occurred or some required values are missing. With the condition, it is
possible to implement segregation of duty checks, e.g, the time period, or Relationship-based AC
(ReBAC). Conditions are usually used to check if a certain requirement on the subject’s attribute is
met or not. For example, an employee can access a classified document only if the access request
is from the company facilities (e.g., a company laptop). In SPT, Indeterminate is not considered
in the policy test. The reason is that SPT always believe the system can evaluate the condition
variable whichever the system is. It is not meaningful to test a policy with an Indeterminate con-
dition.

Beneficiary Originator Beneficiary Originator
@ rule(S,) is inherited from rule(S;) ®ru|e(R2) is inherited from rule(R;) @
Subject S, Subject S; Resource R, Resource R;
If rule(S;) = Permit, then rule(S,) = Permit If rule(R;) = Permit, then rule(R,) = Permit
(a) Subject Inheritance (b) Resource Inheritance

Figure 3: Subject and Object Inheritance

Copyright (©InfoBeyond Technology, LLC Page 12

5.3 Inheritance

AC inheritance helps a policy an author to better compose polices, especially for a large orga-
nization that has many subjects or resources. Meanwhile, it helps for policy tests and analysis.
Inheritance specifically defines a set of hierarchical attribute relations. Figure 3] shows an example
of the subject inheritance. Figure[3](a) shows that Subject S, is the beneficiary of Subject S} which
could be a rule originator. By following the inheritance, the beneficiary, e.g., So, could enjoy the
accessing right of the originator S;. The inheritance logic can be intuitively stated by:

If Rule(Sy) = Permit, then Rule(Ss) = Permit (1)

Figure 3] (b) shows the resource inheritance where Resource R; is the beneficiary of Resource R;.
Similarly, 1?5 could enjoy the accessing privilege of the originator I?;, stated by:

If Rule(R;) = Permit, then Rule(Ry) = Permit (2)

Chief of Hospital Chief of Hospital

rule(S;) = Permit

Head Nurse | Head Nurse

rule(S,) = Permit

/ N Midwife / L Midwife
Nurse 4 \ Nurse 4 \
/

rule(S,) = Permit

., rule(Ss) = Permit |, rule(Ss) = Deny
Nurse Attendant Nurse Attendant
(a): If rule(Ss) = Permit, then rule(S,), rule(S,), (b): If rule(Ss) = Deny, the rule is NOT
rule(S;) = Permit propagated over the inheritance

Figure 4: Subject Inheritance Architecture

SPT implements the inheritance in a hierarchical structure. This enales a policy author to specify a
set of policy rules without duplicating the composition. Meanwhile, this keeps the rule consistence
to avoid rule errors while editing multiple rules. Figure [] shows the hierarchical inheritance that
can be inferred from the nursing service in Figure [I| which simplifies the rule definition as the
beneficiary subject can inherit the rule from the originator. As shown in Figure [] (a), there is an
inheritance relations as the following inheriting chain:

Chief of Hospital — Head Nurse — Midwife — Nurse Attendant 3)

According to the inheriting chain, a rule (e.g., rule(s;)) at the Nurse Attendant will be correspond-
ingly prorogated to Midwife (e.g., rule(s,)), Head Nurse (e.g., rule(sz)), and Chief of Hospital

(e.g., rule(sy)).
Copyright (©InfoBeyond Technology, LLC Page 13

However, the rule prorogation over the inheritance relations is only effective for the rule that has
a decision of Permit, which represents the accessing permit to a specific resource. If a rule has
a decision of Deny, the rule will not be prorogated as the negative accessing right would not be
inherited. This is because a subject or resource at a higher hierarchical level would not inherit
the negative accessing privilege of a subject or subject in a lower level. Consider a Folder and its
Subfolder as two inherited resource. The Permit of accessing the Subfolder indicates the Permit of
the accessing the Folder. Otherwise, the Subfolder isn’t accessible. On the other hand, the Deny
of the access of the Subfolder doesn’t mean the Deny of the Folder. The decision of the Folder
will be not affected by the Deny of the access of the Subfolder. Figure [(b) shows the example
that rule(ss) = Deny at Nurse Attendant will not be inherited to Midwife Sy as the Midwife
may have higher authority on the resource specified in rule(ss). Therefore, the following relation
is incorrect:

I f rule(ss) = Deny, then rule(sy) = Deny 4)

As indicated Figure [I] (a), there can be multiple levels of inheritance but there cannot be a loop
of inheritance. The reason is that loop don’t permitted in the hierarchical structure. SP7T has the
function of automatical loop detection to avoid you to define any loop of inheritance.

Further, a subject/resource attribute can inherit multiple subject/subject attributes. Figure |l| shows
that Head Nurse is a beneficiary of all subject attributes of the subtree rooted at Head Nurse, 1.e.,
a beneficiary of Nurse, Midwife, and Nurse Attendant.

5.4 AC Algorithm

XACML defines policy and rule algorithms to handle special cases such as the policy having con-
flicted or insufficient rules for decision making. There are two types of AC algorithms: rule/policy
combining algorithm and policy enforcement algorithm.

5.4.1 Combining Algorithm

A policyset could have one or more policies and meanwhile, a policy could consist of a number of
individual rules. For multiple policies and rules, a decision in response to a security requirement
is the result of the consideration of all the policies and rules via different combining algorithms.
However, these policies and rules could have the overlapped scope such that conflict of decisions
could emerge when multiple policies or rules are applied. Combining algorithms is to specify the
way to handle duplicate policies or rules that integrate the different decisions. Decisions could be
different while applying different rule or policy combining algorithms. Policy test is to verify if
the decision of applying these combining algorithms is the intended one or not. Meanwhile, the
sequence of the rules during the combining could affect the decision and it needs to verify if the
policies and rules are ordered properly to achieve our intended decision.

Let’s image an example that the first rule says that managers can view the documents in a system
while the second rule regulates that none can work before 9 : 00 : 00 am. What if the request is
about the manager Alice in an attempt to view a document at 8 : 00 : 00 am? Which rule wins?
This is what the rule combination algorithms tell us. They help resolve conflicts of the decision.

Copyright (©InfoBeyond Technology, LLC Page 14

SPT currently supports XACML policy and rule combination algorithms as the following:

First Applicable: First applicable takes the permission decision of the first occurrence of a
particular variable if the same variable was in the policy twice with a different Permission.
For example if two policies were merged, it would take the permission decision of the first
one.

Deny Override: Deny Override scans through the entire model to find all the duplicate
variables. Once a deny permission of duplicate variable is found it will deny the access to
that particular rule in the model.

Permit Override: Permit Override scans through the entire model to find all the duplicate
variables. Once a grant permission of duplicate variable is found it will permit the access to
that particular rule in the model.

Only One Applicable: Only One Applicable is only applied for policy sets to combine
policy sets and policies. It cannot be used to combine rules. This algorithm is that only one
of the policy produces a valid decision whether Deny or Permit.

Deny Unless Permit: This algorithm only allows two decisions: Permit or Deny. It is
intended for those cases where a permit decision should have priority over a deny decision,
and an Indeterminate or NotApplicable must never be the result.

Permit Unless Deny: This algorithm only allows two decisions: Permit or Deny. It is
intended for those cases where a deny decision should have priority over a permit decision,
and an Indeterminate or NotApplicable must never be the result.

SPT additionally supports optional combining algorithms:

Weak-Consensus: Weak-consensus requires that policies should not conflict with each
other. It denies an access request if some policies deny the request, and no policy permits it.
It permits an access request if some policies permit the request, and no policy denies it. It
outputs conflict if some policies permit and some deny.

Strong-Consensus: This algorithm requires that all policies must agree on a decision. It
denies an access request if all policies deny the request. It permits an access request if all
policies permit the request. Conflict is output otherwise. Note that this algorithm is different
from weak-consensus since a policy may neither permit nor deny a request (e.g., it might
not be applicable to the request). When some policies deny a request and others are not
applicable to it, weak-consensus denies the request but strong consensus outputs conflict.

Weak-Majority: When different policies make conflicting decisions (permit and deny)
about a request, the request is permitted (denied, resp.) if the number of policies permit-
ting (denying, resp.) it is greater than the number of policies denying (permitting, resp.)
it.

Strong-Majority: Strong-majority permits (denies, resp.) a request if more than half of all
policies, i.e., 1/2, permit (deny, resp.) it.

Super-Majority-Permit: Super-majority-permit permits an access request if more than 2/3
of all policies permit it, and denies it otherwise.

Copyright (©InfoBeyond Technology, LLC Page 15

5.4.2 Policy Enforcement Algorithm

Policy enforcement algorithm is used to make decision on Not Applicable requests. When the
incoming request does not match any rule in the AC policy, we say the request is Not Applicable.
For a Not Applicable request, the rules in the AC policy are not sufficient to make the decision.
Policy enforcement algorithm is added to each policy to resolve this problem. There are two kinds
of policy enforcement algorithms: Deny Based and Permit Based.

e Deny Based: When the incoming request does not match any rule in the AC policy, it will
be denied.

e Permit Based: When the incoming request does not match any rule in the AC policy, it will
be permitted.

5.5 AC Models

An AC model defines the relationships among Subjects, Resources, Actions, Environments, Con-
ditions, and their AC effectiveness of Decision. It is a framework that dictates how subjects access
objects. It uses AC technologies and security mechanisms to enforce the rules and objectives of the
model. SPT supports three AC models namely, ABAC, MultiLevel, and Workflow. In SPT, the
legacy AC models, including Discretionary Access Control (DAC), Identity-Based Access Control
(IBAC), Mandatory Access Control (MAC), Rule-Based Access Control (RAC), Role-Based Ac-
cess Control (RBAC), Organization-Based Access control (OrBAC), History-Based Access Con-
trol (HBAC), can be generally evolved into the ABAC model. Therefore, SP7T ignores these
legacy AC models.

5.5.1 ABAC

ABAC is also named as Policy-Based Access Control (PBAC) as the access permissions are
granted to a request through a set of policies. SPT has the ABAC model template in favor of
a policy author to continently define many AC rules based on their environment variables (Subject,
Resource, and Action). Unlike MLS and Workflow, ABAC template consists rules without any
embedded AC model. Giving the example in Figure |1} the following attributes can be defined:

1. Subject - Role: Midwife, Nursing Attendant, Patient

2. Resource - Patient Info.: Prescription, Patient Personal Information

3. Action: Read, Read and add note, and write

4. Environment: Any Environment
In the above definitions, Role is a Subject attribute of three attribute values, named as Midwife,
Nursing Attendant, and Patient. Similarly, Patient Info. is a Resource attribute of two values that
are Prescription, Patient Personal Information. Meanwhile, three attribute values are defined as

shown in the Action definition. Using these attributes, the following ABAC policies with rules can
be specified as examples:

Copyright ©InfoBeyond Technology, LLC Page 16

Midwife’s Policy with the following AC Rules:

Subject: Midwife; Resource: Prescription; Action: Read; Permit

Subject: Midwife; Resource: Prescription; Action: Read and add note; Permit
Subject: Midwife; Resource: Prescription; Action: Write; Permit

Subject: Midwife; Resource: Patient Personal Information; Action: Read; Deny

Subject: Midwife; Resource: Patient information; Action: Read and add note; Permit

S Nk wh =

Subject: Midwife; Resource: Patient Personal Information; Action: write; Permit

Nursing Attendant’s Policy with the following AC Rules:

Subject: Nursing Attendant; Resource: Prescription; Action: Read; Permit

Subject: Nursing Attendant; Resource: Prescription; Action: Read and add note; Permit
Subject: Nursing Attendant; Resource: Prescription; Action: Write; Deny

Subject: Nursing Attendant; Resource: Patient Personal Information; Action: Read; Permit

A

Subject: Nursing Attendant; Resource: Patient Personal Information; Action: Read and add
note; Deny

6. Subject: Nursing Attendant; Resource: Patient Personal Information; Action: Write; Deny

Patient’s Policy with the following AC Rules:

Subject: Patient; Resource: Prescription; Action: Read; Permit

Subject: Patient; Resource: Prescription; Action: Read and add note; Deny
Subject: Patient; Resource: Prescription; Action: Write; Deny

Subject: Patient; Resource: Patient Personal Information; Action: Read; Permit

Subject: Patient; Resource: Patient Personal Information; Action: Read and add note; Permit

AN

Subject: Patient; Resource: Patient Personal Information; Action: Write; Permit

ABAC GUlI-based template in SP7T allows policy authors to user-friendly define these polices
and rules. XACML 3.0 presents a recommended ABAC architecture. Giving an AC Request, PEP
inspects the request and generates an authorization request to the PDP. PDP evaluates the policies
and returns a Permit/Deny decision to the PEP.

5.5.2 MultiLevel Security Model

The MultiLevel Security Model (MLS) enforces Bell-LaPadula and Biba models, which protects
the resources from being accessed from unauthorized ranking members. This particular model
uses two rule properties: No read up, No write down. These properties ensure no Subject cannot
read a Resource above their access level or write to a Resource lower than their current rank.

Rank is a numerical value attribute that can only be mapped to any Subject or Resource attributes
for the MultiLevel Model. The higher the value of the integer placed on the rank attribute is more
classified (in terms of Multilevel Security Level model). When creating a Rank Attribute, the
Attribute name, for example, could be any text, for example “Rank_1" and its attribute type is an

Copyright ©InfoBeyond Technology, LLC Page 17

Subject Object Subject Object

0 a2
Ll

(a) No Read Up (b) No Write Up

Figure 5: Multilevel Security Models

Integer with the attribute value “2” for example. Note that when applying rank attributes it can
only enter 1 value per rank attribute.

No Read Up (Bell-LaPadula Model): This property handles which subjects can have access
to read the resource. A subject can read its current ranked resource and any resource below its
current rank. It is forbidden to read any resource above its rank. Figure[5](a) is an example of the
No Read Up model where three users ranked 0, 1, 2 respectively and there resources ranked 0, 1, 2
respectively. Higher the rank of the Subject or Resource higher the security level it has. Figure
B3] (a) shows that the user in Rank 2 can read the Resource 0, 1, 2, the user in Rank 1 can read the
Resource 0, 1, and the user in Rank 0 can only read the Resource 0.

No Write Down (Biba Model): This property protects the information/resource from being changed
from unauthorized subjects. A subject can write to a resource as long as they are the same rank
level or above their current rank. However, a higher ranked subject cannot write to a lower ranked
resource. Higher ranked subjects have access to more classified information so if they are not al-
lowed to write down this will help prevent information leaking to unauthorized subjects. Figure
B5] (b) is an example of No Write Down model where three users ranked 0, 1, 2 respectively and
there resources ranked 0, 1, 2 respectively. Higher the rank of the Subject or Resource higher the
security level it has. Figure [5](a) shows that the user in Rank 2 can only write the Resource 2, the
user in Rank 1 can write the Resource 1, 2, and the user in Rank O can write the Resource 0, 1, 2.

5.5.3 Workflow Model

Workflow model enforces the sequential access privileges State by State in a given sequel which
represents the processing flow. Figure [5] shows the Workflow model where a State is associated
with a rule that have to be accomplished in this state such that it can be transitioned to the next
State. In other words, each State has to process the rule before moving to the next processing state.
On the other hands, all other requests other than the specific rule have to be denied. For example,
an Invoice can only be paid (e.g., Action in State 2) only after the Department Manager has proved
it (e.g., Action in State 1). In this AC example, the request of any Action in State 2 will be always
Denied if the Action in State 1 is not accomplished. Let ’s consider the following workflow that
defines:

Copyright (©InfoBeyond Technology, LLC Page 18

{ State 1: (S'y, R, A’4, E'3, C'1)--> Deny j

[State 1: (S, R, Ay, E1, C;)--> Permit j @
’_a oo 0 G

[State 2: (S, R, A, E5, C;)--> Permit j

[State 2: (S',, R, A',, E’,, C';)--> Deny j

Figure 6: Workflow AC Model

1. Subject - Role: Client, Engineer, Builder
2. Resource - Design: Blueprint
3. Action - Workflow Actions: Review, Review and Add Note, and Write

This example is considered as a workflow where the Blueprint design has to be review (e.g., Action:
Read and Note) by Client, the Engineer can then revise (e.g., Action: Review) the Blueprint design
based on the Client’s note. After the revision the design (e.g., Action Write) by the Engineer, the
Builder can then review the Blueprint design for further works. For such an example, the following
states can be defined:

State 1: Rule 1 (Client, Blueprint, Review and Add Note) — Permit
State 2: Rule 2 (Engineer, Blueprint, Review) — Permit

State 3: Rule 3 (Engineer, Blueprint, Write) — Permit

State 4: Rule 4 (Builder, Blueprint, Review) — Permit

Giving any state in the example, all access requests are denied for the Subject Blueprint unless
specified in the above defined states.

5.6 XACML

XACML defines a structure of Extensible Markup Language (XML). It defines an architecture
and a processing model describing how to evaluate access requests according to the rules defined
in policies. XACML 3.0 is a new version which has new features. For example, XACML 3.0
defines new attribute functions and datatypes. It also enhances XACML 2.0’s existing combination
algorithms. SPT is compatible to XACML 3.0. It provides XACML functions, such as importing
XACML into a SPT project, converting XACML 2.0 format to XACML 3.0 format, converting
AC model policy into XACML 3.0 format and exporting them, and XACML 3.0 editor.

Copyright (©InfoBeyond Technology, LLC Page 19

6 Policy Tests and Analysis

SPT policy test and analysis run the AC models in a testing engine and a policy author can then
analyze the results to verify if the AC decisions from the tests are the intended ones or not. If all
the results are matched with the intended results, the policies including the rules and the algorithms
in the AC models are correctly composed and they can be deployed into the actual AC systems.
Otherwise, there are AC flaws such as AC leaks, unexpectedly deny an access request, etc., in the
policies. In this case, the policy author needs to revise the policies or the algorithms and runs for
new results until the results are all the expectation. This section illustrates the concept in regard to
the policy test and analysis.

sting

Present Results to Policy
Author

Choose AC model with L
Policies/Rules for the Test

Policy author checks
the testing Result

wyy4og|e pue sio44d Adijod xi4

[

Specify the Policy

Enforcement Algorithm

environment Policy Deployment

Figure 7: Policy Tests and Analysis

6.1 General Testing Procedure

Figure [7] shows SPT general steps that illustrate the basic policy test and analysis process. At
first, the policy author configures the policy testing environment. It includes the specification
of one or more AC Security Requirements that act as access requests, e.g., Step 1 in Figure
The environment should be further chosen an AC model with the policies that the AC Security
Requirement will be applied to, e.g., Step 2 in Figure [/, Meanwhile, the combining and policy
enforcement algorithms are specified for the testing environment, e.g., Step 3 in Figure[7]

Copyright (©InfoBeyond Technology, LLC Page 20

After that, the SP7T testing engine is executed with the inputting testing environmental settings,
e.g., Step 4 in Figure [/l Then, the verification results will be presented to the policy author via
GUI, Step 5 in Figure [/l With these results, the policy author can check if the testing results are
expected or not, e.g., Step 6 in Figure

Suppose the TRUE indicates the intention of the result (i.e., Permit or Deny) which says the AC
Security Requirement is matched with the expected AC effectiveness. Otherwise, FALSE indicates
AC security issues (e.g., AC leaks). In this case, the policy author needs to revise the policy rules
or the rule combining and policy enforcement algorithms, e.g., fix the policy errors or algorithms
in Step 7 in Figure [/| This manual classifies the general AC flaws into eight types of AC errors.

The above process should be repeated with different AC Security Requirements to achieve com-
prehensive tests. In the end, the policies after the tests can be converted into XACML 3.0 format
and deployed into a real AC system. SP7T provides various verification methods to verify the
policies in different ways. These methods will be further discussed in the following subsections.

6.2 AC Security Requirement

Before describing policy tests, we clarify the term of AC Security Requirement. An AC Security
Requirement (i.e., Security Requirement for a short term) is a statement of an AC requirement with
a Decision in a form of:

{Subject(s), Action(s), Resource(s), Environment(s), Condition(s)} — Decision : Permit/Deny (5)
which states an AC request with an AC Decision of Permit or Deny.

Consider the nursing service in Figure|l| A Security Requirement example could be:

{Nursing Attendant, Delete, Presription, any Environment, any Condition} — Deny (6)

to state that a Nursing Attendant is not permitted to delete the patient Prescription in any Environ-
ment and any Condition.

Indicated in Express[5] a Security Requirement has the same format as a rule. The difference is that
the Security Requirement is utilized for the purpose of testing if the intended AC security is met
or not. Differently, an AC rule is a component of a policy that controls the access of the Resource.
If a Security Requirement is proven to be TRUE, the AC effectiveness expressed by the Security
Requirement is achieved, such as:

{Nursing Attendant, Delete, Presription, any Environment, any Condition} — Deny TRUE (7)

Moreover, if the Security Requirement is matched with the intended AC effectiveness, the AC
security is achieved. Otherwise, there are AC flaw(s) caused by the polices or the associated
algorithms. On the contrary, if a Security Requirement is proven to be FALSE, the AC effectiveness
expressed by the Security Requirement is not achieved, such as:

{Nursing Attendant, Delete, Presription, any Environment, any Condition} — Deny FALSE (8)

Copyright (©InfoBeyond Technology, LLC Page 21

In this case, if the Security Requirement is matched with the intended AC effectiveness (i.e., Deny),
the FALSE results indicates AC flaw(s) that are caused by the polices or the associated algo-
rithms. Otherwise, the verification result of FALSE indicates the satisfaction of AC effectiveness
(e.g., Permit). SPT allows three types of Security Requirements that are defined for different AC
testing scenarios:

1. Individual Security Requirement: This is to test each Security Requirement to verify its
AC effectiveness. Multiple individual security requirements can be defined and tested to-
gether in the SPT and however they are tested individually and the results are analyzed
separately.

2. Separation of Duty Security Requirement: This is to define at least two or more Security
Requirements in order to verify the correlated AC effectiveness to verify if there is any
Conflict of Interest among these Security Requirements. Conflict of interest is common in
the government, legal, financial, market, healthcare, and many real commercial business AC
systems. Dual role relationship could cause Conflicts of Interest, such as Mutually-Exclusive
Roles. It needs to prevent a person who has a role of authority that conflicts with other role of
different access permission of the resource. Consider the roles in a bank. Conflict of interest
arises that a loan manager to change his/her client grade (e.g., from silver to premium) in
order to lower his/her mortgage account interest rate. In some AC systems, a person can
either access Resource R; or Resource Rs, but not both. Similarly, Separation of Duty may
allow a person to take Action A;, or Action A,, but not both. Separation of Duty Security
Requirement is for the purpose of detecting the Conflict of Interest.

3. Combinatorial Security Requirement: SP7 can automatically generate a number of In-
dividual Security Requirements by pairwise or all-pairs attribute combinatorial algorithms.
The collection of these requirements is called as a testing suite. This facilitates the test of the
Individual Security Requirements as it avoids a policy author to manually compose a large
number of Individual Security Requirements, which is tedious and time-consuming. Similar
to software testing, testing suite allows a policy author to achieve a certain testing coverage.
Specifically, SPT can automatically generate t— (i.e., t = 2,3,4,5,6) way combinatorial
testing suites. 6— way combinatorial testing suite achieves 100% testing coverage of all pos-
sible combinations, e.g., 6 variables of Subject, Resource, Action, Condition, Environment,
and Permission. However, the generation and testing of 6— way combinatorial testing suite
have the highest testing and analyzing complexity, as the number of possible combination
could be big. Pairwise testing (e.g., 2— way combinatorial testing) is commonly suggested
as its testing coverage can find 50% — 90% AC flaws. 4— way combinatorial testing can
mostly discover most complex AC flaws and its testing coverage can discover closely 100%
AC flaws.

Upon the composition of Security Requirements, policy tests and analysis are conducted to verify
the AC effectiveness of the security policies.

6.3 Policy Tests

SPT allows a policy author to design a variety of access cases to verify its AC results (i.e., Permit
or Deny) against the AC policies and rules composed through ABAC, MLS, and Workflow mod-
els. For such a purpose, a policy author first generates Security Requirements in any of three types,

Copyright ©InfoBeyond Technology, LLC Page 22

Policy analysis

v
Policy Verification - Merged w
Q O { Y 2) ﬁ’olicy 1: (ruley, ruleq s, ..., rulel,Aﬂ
ﬂndividual Security Requirement W Q
: @olicy Verification —Combined} [Policy 2: (ruleyq, ruleyy, ..., rulez,Bﬂ
Eiombinatorial Security Requirement)‘ [J
Q [Separation of Duty - Merged j
w Output
(Separation of Duty | (Separation of Duty -) [Policy n: (ruley s, rulen, ..., rulen,L)j
Q @ombined J
Security Requirement < 4 AC Model with Policies

Testing Methods

Figure 8: Multiple Policy Testing Methods

1.e., Individual Security Requirement, Separation of Duty Security Requirement, or Combinatorial
Security Requirement. The policy author then can test these Security Requirements against the
composed AC policies to see if the testing results are matched to the Decision of Security Require-
ments. Particularly, the policy analysis admits the following principle for AC flow detection:

Theory (AC Flaw Detection (ACFD)): The ACFD theory is that the policy testing result (i.e.,
Permit or Deny) is compared with the Decision of the Security Requirement to yield a TRUE or
FALSE:

e If the Decision of the Security Requirement is the intended result, TRUE represents the AC
satisfaction and otherwise FALSE indicates AC flaw (s);

e [f the Decision of the Security Requirement is the unintended result, TRUE indicates AC
flaws and FALSE represents the AC satisfaction.

where the intended result is judged by the policy author according to the access control security
requirements.

Applying the AC flaw detection theory with various Security Requirements, SP7T allows the policy
author to comprehensively conduct the policy verification, analyze the testing results to detect
the potential AC flaws, revise the AC model including the rules, policies, and algorithms, and
furthermore retest it till all the results are satisfied.

6.3.1 Single vs. Multiple Policy Verification

Policy test can be generally categorized into Single Policy Verification and Multiple Policy Veri-
fication. Single Policy Verification evaluates the Security Requirements against each role in one
policy. A rule combination algorithm to resolve the conflicting results among rules. Further, a
policy enforcement algorithm is used to achieve a Decision when all rule testing results are Not
Applicable. The testing result is applied to ACFD theory for flaw detection. Regardless multi-
ple policies, merged or combined testing method has to chosen to specify how these policies can

Copyright ©InfoBeyond Technology, LLC Page 23

be aggregated in the test. It is worth mentioning that merged and combined testing methods are
equal to Single Policy Verification in the case of one policy. Figure [§] shows different methods
of multiple policy tests to verify the Security Requirements: (i) Merged Policy Verification, (ii)
Combined Policy Verification, (iii) Merged Policy Separation of Duty, and (iv) Combined Policy
Separation of Duty. As shown in Figure [8] Individual Security Requirement and Combinatorial
Security Requirement can perform the merged or combined policy verification. Similarly, Separa-
tion of Duty Security Requirement can perform the merged or combined policy Separation of Duty
tests. Merged and combined tests represent two different PDP processes how the rule and policy
are evaluated to reach a decision. The following subsections give the detailed description of the
these testing methods.

Permit/Deny
1,1
. N I
E’ollcy il (ruTelyl, ruley,, ..., ru el,A)] am
: D
= 5
(0] <
| 5 |3
v v Nz ~ S =
Policy 2: (rule,,,, rule rule,s) : e = A
Yy Z: 2,1, 2,27 2,B. Permit/Deny/NA = 8
S » 3 —P» TRUE/FALSE
0] o
| > =
N2 N N N o) >
g @ .
= O | Permit/Deny
> =
n,1 3 5_1-
:
. N2 VR 2 S \)
Policy n: (rule, s, rulen ,, ..., rule,) nL
| L

Permit/Deny/NA

(1) Security Requirement is (2) Results are merged by Rule

evaluated with each rule Combining Algorithm (B) Eiores)cp e FellE)

Figure 9: Merged Policy Verification

6.3.2 Merged Policy Verification

Merged Policy Verifications tests all rules of policies as a merged policy.

Figure [9] shows the principle of the merged policy verification. In this test, the Security Require-
ment is evaluated with all the rules of the chosen policies. Suppose there are n policies. Policy 1 has
A rules, policy 2 has B rules, and so on. Merged Policy Verification is that the Security Require-
ment is individually tested against each rule in each policy, i.e., (1,1),--- , (1, A), - ,(n,1),--- ,(n, L)).
For the rule tests, it then totally has A + B+, - -+ , +L testing results, i.e., Permit/Deny/NA (Non-
Applicable) as shown in Figure 0] All these results are applied to the rule combining algorithm
(e.g., first applicable) together. Hereafter, a policy enforcement algorithm is considered to the
merged policy to resolve the duplicated/conflictive rules. In the end, the combining result (i.e., Per-
mit or Deny) is compared with the result of the Security Requirement to yield a TRUE or FALSE,
which is applied to ACFD theory for flaw detection. As we can see from the above described

Copyright (©InfoBeyond Technology, LLC Page 24

process, multiple policies (e.g., Policy 1 — n) are tested as if they are merged as one policy where
the rules in each policy are tested individually against the Security Requirement subsequently.

— Permit/Deny

11 =
i i 7 Permit/Deny/NA = (=}
g N v = 58
{Pollcy 1: (ruleys, ruleq, ..., ru eLA)J > > <
i m Ve D\
t | A 2| Permit/Deny/NA Z 119!: § °§ g"
n =3 = g
Policy 1 test g g 3- g 1
>
T T o o
N % = —» TRUE/FALSE
Policy 2: (rulez 1 rulez 2, -y TUlESB))

(>

wyoS)y Suluiquio) Adljod

| Permit/Deny
T NN Z S
o0 L n1 - =
= 5
> 5 »2
— R
4 =3 = ¢
Policy n: (rulen 1 rulen 2,y fuleg) 3g 383 —
= g
=3
® 3 (2) Policy enforcement to

combine the result

Policy n test

Permit/Deny/NA

(1) Security Requirement is evaluated with policy Permit/Deny

NA: Non-Applicable

Figure 10: Combined Policy Verification

6.3.3 Combined Policy Verification

Combined Policy Verification subsequently tests all policies and then combine the policy testing
results into a Decision.

Figure [10] shows the principle of combined policy verification where combines the Decisions of
all policies via a policy combining algorithm. In this test, each policy (e.g., Policy 1 — n) is first
evaluated independently with Security Requirement. The decision of each policy is made by a
rule combining algorithm and results could be Permit, Deny, or NA (Non-Applicable). After the
policy enforcement algorithm, the decision of each policy becomes only Permit or Deny. It is
noted that the rule combining algorithms and policy enforcements for different policies could be
differently specified. As shown in Figure [I0} Policy 1 is tested with A times of rule evaluation
and A results are first combined via a rule combining algorithm of the policy. In a similar way,
other policies (e.g., Policy 2 to Policy n) are tested with their rule combining algorithms as well
as their policy enforcement algorithms. The evaluation of the Security Requirement against n
policies will result in n Decision either Permit or Deny. These n Decisions are combined with a
policy combining algorithm and the result (Permit or Deny) is compared with the expectation of the
Security Requirement, which yields TRUE or FALSE. Finally, the TRUE/FALSE result is applied
to ACFD theory for flaw detection. SPPT associates the Security Requirement with each policy
and gives an insight of the rule evaluation. This allows the policy author to find the problematic
policy as well as the rule, showing contradict Decision.

Copyright (©InfoBeyond Technology, LLC Page 25

As we can see from the above-described process, multiple policies (e.g., Policy 1 — n) are first
tested separately against the Security Requirement. All the policy testing results are combined via
a policy combining algorithm and finally compared the Decision in the Security Requirement. The
difference between the Merged Policy Verification and the Combined Policy Verification can be
understood as:

e Rule Level Combination: Merged Policy Verification represents a Rule Level Combination
testing approach that combines all the rules of all policies together as a merged policy.

e Policy Level Combination: Combined Policy Verification represents a Policy Level Com-
bination testing approach that integrates the decisions at the policy level.

Both the approaches can be implemented in a PDP in an AC system.

P
@ecurity Requirement 1) [Merged Policy Verification) iTRUE/FALSa
)
S < S —— Separation of
[) KMerged Policy Verification D iTRUE/FALSEj Duty
N
Verification
. . N A . o . ()
[Securnty Requirement L) \Merged Policy Verification | \TRUE/FALSEJ
N
Separation of Duty Security Each Requirement is tested Results

Requirements

Figure 11: Merged Policy Separation of Duty

6.3.4 Merged Policy Separation of Duty

Merged Policy Separation of Duty enables Merged Policy Verification for multiple Security Re-
quirements to detect Conflict of Interest among Subjects, Resources, or Actions.

Security leaks caused by Separation of Duty is also referred as multiple-duty-related Security Leak-
age. Consider a number of policy rules for a business transaction. The rule for the duty to initiate
a payment may be conflicted with the authorization of this payment by two individuals who have a
Conflict of Interests. A simple example is that a single individual may be considered as a Conflict
of Interest to execute both transactions of payment initiation and authorization. Figure [[T]shows
the principle of Merged Policy Separation of Duty verification. It shows that the Merged Policy
Separation of Duty involves with two or more Security Requirements and each Security Require-
ment are tested with Merged Policy Verification. Separation of Duty Verification is to check the
results of Merged Policy Verification of each Security Requirement and from the results to check
if there are leaks (i.e., conflict) caused by Separation of Duty. Suppose a rule (e.g., rule(p;)) to
initiate a payment and another rule (e.g., rule(ps)) to authorize the payment. It is unable to find
any AC security flaw if two rules are checked separately. However, when Merged Policy Separa-
tion of Duty test is conducted with these rules, the testing results indicate Separation of Duty in
the case that a person is granted with permissions to take these two transactions, while these two
transactions cause a Conflict of Interest.

Copyright ©InfoBeyond Technology, LLC Page 26

@ecurity Requirement 1) @ombined Policy Verification) TRUE/FALSE

S Separation of
C) @ombined Policy Verification) TRUE/FALSE Duty
Verification

[Security Requirement L) @ombined Policy Verification D TRUE/FALSE

Separation of Duty Security Each Requirement is tested Results
Requirements

Figure 12: Combined Policy Separation of Duty

The detection of the Separation of Duty error is not straightforward and the policy author needs
to first identify the potential Subject (e.g., Role), Resource (e.g., Payment), and Actions (e.g.,
Create, Approve) and then design appropriate Security Requirements to verify the hyperpiesis. The
composition of Separation of Duty Security Requirements should be consistent with the business
scenario of Conflicts of Interest.

6.3.5 Combined Policy Separation of Duty

Combined Policy Separation of Duty enables Combined Policy Verification for multiple Security
Requirements to detect Conflict of Interest among Subjects, Resources, or Actions. It is a similar
function as the Merged Policy Separation of Duty. The difference is that each Security Require-
ment in the Combined Policy Separation of Duty is tested with Combined Policy Verification as
illustrated in Figure This indicates that the Conflict of Interest is considered in the level of the
multiple policies. Differently, Merged Policy Separation of Duty considers the Conflict of Interest
in the level of rule and the test is based on one merged policy. Consider a policy (e.g., policy(ry))
with a rule to initiate a payment and another policy (e.g., policy(rz)) with a rule to authorize the
payment. It may have no AC security flaw if two policies are checked separately. When Combined
Policy Separation of Duty test is conducted, a testing result of two 7'RU E's indicates Separation
of Duty as a person is granted the permission to take both transactions according to these two poli-
cies, while the permission of these transactions is a Conflict of Interest for these two roles in one
person.

6.3.6 Access Privilege Preview

In addition to the above illustrated policy tests, SP7T provides Access Privilege Preview functions
for policy authors to review:

1. Giving certain Subject attribute(s), what Resources can be accessed (i.e., Permit) or not
accessed (i.e., Deny), e.g., a Nurse can access what information in a system?

2. Giving certain Resource attribute(s), who (i.e., Subject) can access them or not access them,
e.g., the Prescription can be accessed by who?

Copyright ©InfoBeyond Technology, LLC Page 27

Subject attributes Resource attributes

Query Query
Merged or Combined Merged or Combined
Verifications Verifications
Rule/Policy Combining Rule/Policy Combining
Algorithms Algorithms
Output Output

Resource with Permit/Deny Subject with Permit/Deny
(a): Subject Access Privilege (b): Resource Access Privilege

Figure 13: Access Privilege Preview

These access privilege preview functions allow a policy author to query and check if the Resources
are properly protected with intended AC permission. Figure [I3]shows the principle of the access
privilege preview. It first generates a query which is then applied to the selected AC model, merged
or combined verification methods, and the combining algorithms, and the testing results show the
access privilege of the query. More specifically, these access privilege preview functions can be
categorized into:

1. Subject Privilege Preview: In this access privilege preview, the policy author specifies
a query with the subject attribute of his/her concerns. Consider the example in Figure [I]
The policy may want to know the Midwife’s access privilege in the nursing service system.
He/she can choose the Role attribute with a value of Midwife and apply a query into the
composed AC model. SPT will perform the tests with the specific algorithms. Upon the
tests, SP7T will output all the resources that Midwife can access to or not access to. From the
testing output, the policy author can then review and analyze the Midwife’s access privilege
of all resources with permission or decline. If there is any Resource that is permitted/declined
unintentionally, an AC flaw is indicated. SPPT gives the details of the resource authorization
in connection with each rule.

2. Resource Privilege Preview: The resource access privilege preview is similar to subject
privilege preview. The difference is that it previews the privileges of all subjects for a giving
resource. The policy author specifies a query with the resource attribute of his/her concerns.
Similarly, consider the example in Figure |1} The policy may want to know who can access
(e.g., update) the Prescription in the nursing service system. He/she can choose the Patient
Record attribute with a value of Prescription and apply the query into the composed AC
model. SP7T will perform the tests with the specific algorithms and will output all the
Subjects that can access to the Prescription. From the output, the policy author can then
review and analyze the subject’s access privilege of the Prescription resource. If there is any

Copyright (©InfoBeyond Technology, LLC Page 28

Subject that is not intended to access the Prescription, an AC flaw is indicated. SPT gives
the details of rule decisions of all subjects which allows the policy author to correct the AC
flaw.

Access Privilege Preview presents the summary of Subject or Resource’s privilege and it could be
very useful to detect the AC flaws. The policy author can review the access privilege and compare
it with the intended results in mind. Any contradictions indicate AC flaws and the policy author
should modify the policy or algorithms till the desirable results are presented from the test.

6.4 Policy Analysis and Typical AC Flaw

SPT facilitates policy development and AC flaw detection by providing rich policy relevant ana-
lyzing functions. It enables a policy author to easily edit, manage, and review a number of rules
and policies. Giving an attribute, SPT can easily find all the rules engaged with the attribute and
its inheritance relations with other attributes. Suppose you update an attribute in the AC model
composition. SPT will automatically change it at all policies with such an attribute. For all the
testing functions, SPT presents the detailed testing analysis as well as the decision associated with
the testing environments. SP7T not only gives the testing result, but also all the rules and polices
with their decisions which allows the policy author to find: (i) what is the AC flaw, (i1) where to
fix the flaw, (iii) how to correct the flaw, (iv) what is the AC effectiveness after the modification.
This is because the policy author can easily analyze the results by reviewing the rule or policy
decision-making in the test process. These functions will be described in the next section. This
subsection gives several typical AC errors which may be useful for policy analysis.

We define an AC flaw as an unintended decision that could be caused by rules, policies, as well
as their algorithms. Some of AC flaws are hidden from detection as the decision involves the
effectiveness of multiple rules and policies. Some typical AC flaws are classified as below.

Error Type 1 (Block Privilege): Suppose you know A should access B. However, the B’s acces-
sibility by A is false by following the policy. This type of error is referred as Privilege Blocking in
the specification [2]. It blocks a legitimate access to rightful resources. It can also occur when the
properties of an AC policy cannot render a grant or deny decision, or there is no available logic in
the AC policy algorithm for evaluating the access request. It can also be a result of the deadlock of
access rules where a rule has a dependency on other rule(s), which eventually depend back on the
rule itself, so that a subjects request will never reach a decision because of the cyclic referencing.

Error Type 2 (Leak Privilege): Suppose you know A shouldn’t have the accessibility of B.
However, A is able to B by following the policy. NIST refers this type of error as Privilege
Leakage [2]. It is the situations in which a subject is able to access resources that are prohibited by
the safety requirements. Such leakage may cause either the privilege escalation from one resource
domain or class to prohibited ones such as leakage from lower to higher ranks of an MLS policy,
or privilege leak such as from one role to other prohibited ones of an RBAC policy. Leak Privilege
(i.e. action and resource pair) can be caused by mistaken privilege assignment directly or careless
privilege inheritance indirectly.

Error Type 3 (Not Protected Resource): This is an error that a Resource (e.g., B3) is not protected

Copyright (©InfoBeyond Technology, LLC Page 29

by any rules and policies. For example, a document d is not covered by any policy. The unprotected
resource can cause an error type of Block Privilege.

Error Type 4 (Rule Conflict): This is an error that two or more rules are conflicted in a policy,
e.g., a rule allows the access while the other declines. NIST refers this type of error as Privilege
conflict and stated as the following. Unlike regular programming logic that a later value assignment
of a variable overwrites the previous assigned value of the same variable, the rules of an AC policy
normally have no precedence consideration in permission evaluation. In other words, AC rules will
not be overwritten by other rules unless specifically allowed to. Thus, privilege conflicts appear
when the specifications of two or more access rules result in the conflicting decisions of permitting
subjects access requests by either direct or indirect (inherit) access assignments. In addition, when
multiple policies are evoked for permission, conflicting decisions between policies may occur.

Error Type 5 (Inconsistent Assignment): Suppose a policy author edits a number of XACML
policy documents separately. Attributes, conditions, rule or other policy variables/values could be
inconstantly assigned in different policies. For example, Attribute Nurse could be inconstantly
termed as nursy, murse in different policy documents. ST prevents this error with integrity
verification.

Error Type 6 (AC Inheritance Loop): A policy author may specify an error inheritance relation.
An AC inheritance loop is caused by recursive and subsequent inheritance, e.g., Attribute A —
Attribute B — Attribute C — Attribute A. SPT is able to automatically detect and prevent
an inheritance loop. This type of error is referred as Cyclic Inheritance at the NIST’s specification
[2]. Tt is the problem of privileges inheritance from other users (groups), which also in a chain
of inheritance relation inherit back to the user (group)’s privilege. AC Inheritance Loop leads to
undecidable or infinite access evaluation process.

Error Type 7 (Undecided Rules): Undecided rule error is that a Resource is unassigned with
necessary actions in the workflow AC model. For example, a purchase order is assigned for person
to create but there are no rule is assigned to approve the order. The workflow is unable to move
forward on the working flows due to this error.

Error Type 8 (Separation of Duty Error): This is an error that two or more rules cause the
competing interests among subjects, resources, or actions. For example, a person with Role A and
Role B is conflict for accessing a resource.

The above Error Types includes all the AC flows currently identified by NIST SP 800-192 specifi-
cation [2].

6.5 Consideration of Multiple Policies

As discussed in NIST specification [2], multiple policies could be involved in a distributed en-
terprise environment, such as cloud, distributed networks or systems, 10Ts, or other distributed
systems. It has the case that AC policies are independently developed by different collaborative
or networked systems. In such a case, an inter-system access request (e.g., cross domain access
request) may be evaluated by more than one policies that the requesting subject is governed under.

Copyright (©InfoBeyond Technology, LLC Page 30

Network x

Network y

Figure 14: A Flaw Error in a Distributed Network [2]

Therefore, AC policy autonomy should also be preserved for secure inter-system access. Maintain-
ing the autonomy of all collaborative systems is a key requirement of the policy for inter-operation.
The principle of autonomy states that if an access is permitted by an individual system, it must also
be permitted under secure inter-system access. The principle of security states that if an access is
denied by an individual system, it must also be denied under secure inter-system access. In such a
collaborative system, violations of secure inter-system access can be caused by adding intersystem
privilege inheritance relations or other correlations among policies. Figure[I][2] shows an example
that privilege k& inherits privilege j through legal inter-system privilege inheritance (because both
have the same privilege level j), which is granted in network x but denied in network y. These
types of violations can be detected by checking for cyclic inheritance, leak privilege, and Separa-
tion of Duty errors. Thus, both security and autonomy can be characterized as safety requirements
of a multi-policies AC policy, which should be preserved during collaborations. A meta policy
is a policy that is usually applied for reconciling policy conflicts or to handle priorities of access
decisions rendered from more than one policy. Thus, in addition to autonomy requirements, AC
safety requirement may include a priority model within the meta policy.

Copyright (©InfoBeyond Technology, LLC Page 31

7 Operational Guide

SPT provides a series of functions to compose an AC security model, policy test, policy analysis,
AC flaw inspection, AC flaw correction, and finally transfer all the policies in the security model
into XACML formatted files such that they can be deployed into an AC system with high-security
confidence. This section demonstrates these functions in details. The illustration of the SPT
functions may incorporate the example in Figure [I| for understanding purpose.

7.1 SP7T Installation

SPT software is generally recommended to be installed on a server or computer with Intel Core
17—7700 K —16G' B Memory, equal, or higher configuration. This is because the policy verification
of combinatorial testing suites could involve a number of security requirements (e.g., hundreds or
thousands of combinatorial security requirements) is computationally complex with a high volume
of memory consumption. It also recommends a 34" or bigger monitor with a minimal resolution
of 1920 x 1080 or higher. The testing results are displayed by tables with rich texts. SP7 can run
in Microsoft Windows 8 and 10 OS systems.

< Untitled1 - Security Policy Tool
Shortcut icons
File Project Help
U a7 4 § s < " S ~ "
_ [+ “ | A_‘ i £ va - Q “ o8¢ - | @ & |
& Becunty Policy Tool | Summary) Model Verification | Access Prvilege Preview

Attnibute Model Verification
.
= Subject Right Click each

methods
5 component to start
I fu Action the editing functions

(o
e

Subject/Object Access
Privilege Preview

@ Emvironment
Condition
Inherntance

Policy Testing Results and Analyzing
Zone

>~ Project Tree

&4 Subject Inheritance

‘s Resource Inhentance
Modal Drag to adjust the
O ABAC zone width

o Multilevel
ol Workflow
Access Control Secunty Requirement

4. Indradual Secunty Requirement
Separation of Duty Security Requirement

% Combinatonal Test Suite

XACML Editor

Project Editing Zone ‘

Figure 15: SPT Project Main Interface

Copyright (©InfoBeyond Technology, LLC Page 32

7.2 Project Main Interface

Figure 15| shows a blank project interface when the SPT program is started. Without any doubt, a
project has a project name. Roughly, SP7T project interface includes menus, shortcut icons, policy
editing zone, testing and analyzing zones. Figure [15]shows the major functional components:

e Project Tree: In the policy editing zone, the project tree is utilized to organize the AC
security model and policy components. The project tree specifically consists of “Attribute”,
“Condition”, “Inheritance”, “Model”, “Access Control Security Requirement”, and a “XACML
editor”. Each tab (i.e., component) of the project tree may have sub-tabs to provide a multi-
tude of AC composing and updating functions. These functions appear upon the right click
of the tab, e.g., right click “Attribute”.

e Summary: The “Summary” tab in the Policy Testing Results and Analyzing Zone provides
a global view of the defined AC model, AC resources, and the policy testing and analyzing
results.

e Model Verification: “Model Verification™ allows the policy author to step-by-step configure
the policy testing schema and algorithms, perform comprehensive model checking functions,
present the model testing results, conduct AC flaw inspection, and perform AC flaw correc-
tion and retesting. It also has the functions to output the testing and analyzing results by
table or other formats.

e Access Privilege Preview: “Access Privilege Preview” enables a policy author to query
the accessible resource giving a subject in its AC circumstance, e.g., querying what are the
resources that can be accessed by a Nursing Attendent. It also allows you to preview the
subject accessibility of given resources, e.g., query who can access the patient Prescription.

It is noted that SPT allows a policy author to open multiple projects and each project will have
separate interfaces.

7.3 New or Open an Project
There are several ways to start a project with the “File” menus as shown in Figure [I5}
e New a Project: This is to create a new project from a “New” submenus under “File”,

e Open a Project: An exiting project can be opened from a “Open” submenus under “File”.
“Open” submenus allows to open a recent file,

e Import XACML: A project can be established from an existing XACML policy by imputing
an external XACML file from “Import” submenus under “File”.

It is noted that multiple AC policy projects can be created and they are opened in separate project
interfaces.

Copyright (©InfoBeyond Technology, LLC Page 33

Save X
Save in Project Files v & o

HealthCare spt

f~— Multilevelpolicy spt
Recent fte My project spt
Woaorkflowpalicy. spt

-~

Desktop
Documents
@
This PC
‘_]‘v File name New Project| Save |

Network Files of type Security Policy Tool Project Files v Cancel

Figure 16: Selecting “Save As” to Save the Project

7.4 Saving a Project

“Save As” submenus under “File” saves the project in the .spt format. Figure [16] shows a saving
example. As shown in Figure [I6] SPT saves the project information as a spt file type. This
format can be only properly interpreted by SPT software. Meanwhile, the XACML policy can
be exported as XACMAL files. In addition, the policy editing and testing results can be saved to
Microsoft Excel (e.g., xIsx, xls) files and they can be printed out, which will be shown later.

7.5 Add/Update/Delete Attributes and Attribute Values

The composition of attributes is the first step to create an AC model. The defined attributes will be
used to compose policies with rules. More specifically, attributes and their values can be added,
updated (e.g., modified or revised), and deleted.

7.5.1 Attribute Composition

It is noted that SPT defines a M LS De faultAction attribute by default, which is exclusively
used Multileve Security Model. M LS De faultAction has two actions, namely Read and Write,
as shown in Figure Due to this, Multilevel security is prevented from defining any other
Action attributes and values. We use Subject to illustrate the Add, Update, and Delete attribute
composition operations. It is similar to add/update/delete Resource, Action, and Environment
attributes.

Add an Attribute: Let’s take Subject Attribute as an example to show how to define a new at-
tribute. The steps are:

e Right click on “Subject”, then left click “Add a New Subject Attribute” as shown in Figure
An “Add Subject Attribute” box will pop up as shown in Figure 18] (a).

Copyright (©InfoBeyond Technology, LLC Page 34

& Open an Project.spt - Security Policy Tool
File Project
h.“ A'%"u'@"' .;*;'l'-l' ’:}

) Security Policy Tool
=] a Open an Project
— () Attribute
i Sub_jg "
& Resou Add a New Subjecl Attribute
oy Action [Add a New Subject Atribute]

MI SNk ;
viLsDefaultAc

Read
Winte
@ Environment
«» Condition
~| = Inherntance
' : . Right click Subject to Add a I
£ Subject Inheritance gt click SUb)

New Subject Attribute
«'= Resource Inhentance

= € Model |
O ABAC
Al Muttilevel ‘
ad Workflow

—I & Access Control Secunty Requirement
4b Individual Security Reguirement

Separation of Duty Secunty Regquirement
% Combinatorial Security Requirement
=4 XACML Editor

Figure 17: Right click on “Subject” to Add a New Subject Attribute

e Select an attribute “Data Type” from the drop down menu, such as string, boolean, double,
time, date, dateTime, anyURI, ipAddress, dnsName, etc. SPT supports all “Data Type”
defined in XACML.

e “Name” the attribute, such as Role.

4 Add Subject Attribute X | | & Add Subject Attribute Value X
Subject Attrioute Subject Attribute
Data Type http:/fwww.w3.0rg/2001/XMLSchema#string v Attribute Type: String
Name Role Attribute Name: Role
Attribute Value: Nurse| o
Insert Xacml Code
Add Cancel Add Cancel
(a) Define an Attribute Name (b) Define an Attribute Value

Figure 18: Windows for Adding an Attribute

e Click “Add” and then the composed attribute will show in the Subject list and meanwhile
a popup “Add Subject Attribute Value” window from which you define the Artribute Value,

Copyright (©InfoBeyond Technology, LLC Page 35

such as Nurse, Midwife, etc. The “Add Subject Attribute Value” window as shown in Figure
@ (b) allows you to define an attribute value, e.g., Nurse. Meanwhile, it allows the definition
of multiple attribute values while these values are separated by comma “,”, e.g., Chief of
Hospital, Head Nurse, Nurse, Midwife, Nursing Attendant are defined as five values of the
attribute role in Figure T}

It is worth mentioning that SP7T performs the integrity check such that the composed attribute
value is correctly matched to the “Data Type”. Some example attribute values are provided for
a policy author to easily edit the attribute value in a correct format. Similar to the definition of
Subject attributes and their values, a policy author can compose a set of Subject, Resource, Action,
and Environment attributes, according to the specific AC system.

Update an Attribute: An composed attribute can be modified anytime, even during the policy
composition and test. Consider a subject attribute, e.g., role:

e Right click on the subject attribute (e.g., role) that needs to be modified and select “Update
Access Control Attribute”, as shown in Figure [I9] A box of “Update Subject Attribute” will
pop up with the subject information.

e Change the attribute name to a new one, e.g., Updated Role, and then

e Click on “Update” to finish the updating.

(@5 Untitled1 - Security Policy Tool
File: Project Help

b = 5 — [] iy i s
Eem ¢ -H ;'":"E—__'t:--:" - £ - g O'uf"ﬂ'ﬁ'
HE@IE Security Policy Tool = Summary () Model
=- X Untitled1
= Attribute Role ; http://www w3 org
- & Subject Attribute Type
=Sl Role ; http:/hwww w3.0rg/2001/XMLSchema#string Ehia
Hurse Add a New Attribute Value 5htEE:_._
Nurse Head Update Access Control Attribute Subject
Midwife Delete Subject
Murse Attendant |Update Access Control AttrLbUte|

N

Figure 19: Right Click a Subject Attribute and Select “Update Attribute”

It is noted that you can only change the “Name” of the selected attribute from the “Update Subject
Attribute” function. The modified attribute will be automatically updated in the rules, policies, and
the security requirements if the attribute has been already used in the AC model. This maintains the
attribute consistency in the entire scope of the project. If you think you have wrongly defined the
attribute “Data Type”, you’d like to use the “Delete” function to remove it and redefine a correct
one.

Delete an Attribute: This allows you to delete an attribute:

e Right click the attribute that needs to be deleted in the Project tree and select “Delete”, as
shown in Figure [20]

Copyright ©InfoBeyond Technology, LLC Page 36

@\-_, Untitled1 - Security Policy Tool
File Project Help

N TR) L f— - - 8
e &-H - 8- 5 £ wm” G- al- od -
A& Security Policy Toal =] Summary () Model
=X Untitled1
= Attribute Role ; http://www w3_org|
. B 4 Subject

Attribute Type

=S Role ; http:/fwww w3.org/2001/XMLSchema#) L B
: Add a New Attribute Value i
Nurse Sibictt
Hurée Head Update Access Control Attribute 5.;tie'~r
o Midwife Delete subject
“- - Nurse Attendant |
- Delete ‘

Figure 20: Right Click the Attribute that Needs to be Deleted and Select “Delete”

e Click “Yes” in the popup box to make sure the deletion.

Note: If an attribute is employed in any rule, the attribute cannot be deleted because that policy
with a non-existing attribute is incomplete. The attribute can only be deleted if you first remove all
the rules and security requirements that are engaged with the attribute.

Attribute Summary: When an attribute is composed, the “Attribute Summary” tab (under the
“Summary” tab) will be automatically updated with the defined attribute. Clicking on the “Sub-
ject”, the “Subject Summary” tab displays all the subject attributes with details of the definition,
e.g., Data Type, Name, Values, and Time Created, and Time Modified, as shown in Figure 20| By
clicking a specific Attribute, e.g., Nurse, the Summary tab lists all the Rules and Security Require-
ments that the Attribute Value is used in. The definition of Security Requirements will be further
discussed.

< UntitledO - Security Policy Tool

File Project
i . . =. 2 -8 - - 4 A . . -
‘ 0 B ;mt ST k"8 ii~ ¥ G- al- o
1 7 Security Policy Tool = Summary
‘ — K3 Untitied0
= Attribute Role ; String
= & Subject

String

Nurse Add a New Attribute Value
& Resource Update Attrib
“} g Action Delete Add a New Attribute Value

Read

& Emaronment
Condition
Inheritance

|

Figure 21: Right click on the Targeted Subject Attribute and Select “Add a New Attribute Value”

7.5.2 Attribute Values

Add Attribute Values: An attribute should have at least one attribute value. SP7T allows one or
more attribute values to be added at one time to an attribute after the attribute is created. Adding
an attribute value is conducted by:

Copyright (©InfoBeyond Technology, LLC Page 37

e Right click the selected attribute and then left click “Add a New Attribute Value”. It will pop
up a window such as “Add Subject Attribute Value”, as shown in Figure 21]

e Input the attribute value of the specific attribute “Data Type”. Multiple attribute values can
be input by separating them with a comma, such as Administration, Nursing, Medical for

three values of attribute Division in the example of Figure I]

e Click “Add” button to add the value.

Note: The editing of attribute values doesn’t allow you to change the attribute “Data Type” and

“Name”. SPT prevents duplicated attribute values for a given attribute.

Update an Attribute Value: It allows to
modify an attribute value:

e Right click the attribute value that
needs to be updated and select “Up-
date Attribute Value”.

e Change the attribute value in the
popup box.

e Click “Update”.

If the attribute value has been utilized in rule
and security requirement, the modified one
will be automatically updated in these en-
gaged rule and the security requirement to
maintain the attribute consistency.

Remove an Attribute Value: An attribute
value can be deleted if it is not engaged in
any rule and security requirement.

e Right click the attribute value that
needs to be deleted in the list and se-
lect “Remove Attribute Value”.

e Click “Yes” to make sure the deletion.

If an attribute value is engaged in a policy
or a security requirement, the attribute value
cannot be deleted immediately because this
makes the policy and security requirement
incomplete with a undefined attribute. In

this case, you should first remove all the rules and security requirements that utilize the attribute

value before removing the attribute value.

Copyright (©InfoBeyond Technology, LLC

File Project Help

et .
Cam - -

 aa AN e

(o

w&@ Security Policy Tool
=1 T HealthCare
;
| 4 Subject

= Role ; http://www w3 org/200 1/XMLSchema#string
Chief of Hospital
Head Nurse
Nurse
Midwife
Nurse Attendant

= Department ; http:/fwww.w3.0rg/2001/XMLSchema#string
Emergency Room
Out-patient

= Devision ; hitp:/www.w3.0rg/200 1/XMLSchemat#string
Adminstrative Senices
Nursing Semices
Medical Services
Head

& Resource

= Patient Record ; http://www.w3.0rg/2001/XMLSchema#string
Prescription
Medical Record
Personal Information

= Patient Medicare ; http:/fwww w3 org/2001/XMLSchema#string
Dressing care
Bathing care
Feeding care
Tolieting care
Catheter care
Excise care
Safety care
Post Mortem care

= f= Action

= Nursing Action ; http:/fwww w3_org/2001/XMLSchema#string
Create
Read
Write
Delete

% Fraranmant

Figure 22: Attributes Composed for FigureH

Page 38

= Summary (~) Model Verification Access Privilege Preview

Attribute Summary

@
a |

Artribute Type

Subject

ole

>

Fi
Roie
B
R

ole
Role
Deparrment

Deparment

Figure 23: Attributes in a Table Composed for Figure

Figure 22] shows examples of the attributes defined for the Nursing Service described in Figure [I}
The attributes are organized by a tree and each node represents an attribute name or an attribute
value.

Clicking “Attribute” in the project tree, “ Attribute Summary” tab will present the attribute sum-
mary as shown in Figure 23] It lists all the attributes with the detailed definition. For each attribute,
the table shows the “Attribute Type”, “Data Type”, “Name”, “Value”, “Attribute Created”, and
“Time Modified”. The Summary also provides a Search function to find an attribute composed.
Meanwhile, it has an Excel icon from which you can save the attributes in an Excel table. An
enlarge icon offer you to display the attributes in a separate page. In addition, you can print the
summary by clicking on the Print icon.

<Condition>
<Apply FunctionId="urn:ocasis:namesitci:xacml:1l.0:function:string-equal”>
<Apply
FunctionId="urn:casis:names:tc:xacml:1.0:function:string-one-and-only">
<AttributeDesignator
MustBePresent="false"
Category="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject"
AttributeId="urn:oasis:names:tc:xacml:3.0:example: attribute:physician-id"
DataType="http://www.w3.0rg/2001/XMLSchema#string"/>
</Apply>
<Apply
FunctionId="urn:casis:names:tc:xacml:1.0:function:string-one-and-only">
<AttributeSelector
MustBePresent="false"
Category="urn:ocasis:names:tc:xacml:3.0:attribute-category:resource”
Path="md: record/md:primaryCarePhysician/md:registrationID/text ()"
DataType="http://www.w3.0rg/2001/XMLSchema#string"/>
</Apply>
</Apply>
</Condition>

Figure 24: Condition - An Example

7.6 Condition

Condition is a boolean decision function to decide if Effect applies. It may be absent. The boolean
decision function can be evaluated to “True”, “False” or “Indeterminate. If the Condition evaluates
to True, then the Rule’s Effect (Permit or Deny that is associated with successful evaluation of the
Rule) will be returned. Figure [24] shows an XACML 3.0 Condition example. Please noted that the
evaluation of the boolean decision function of the Condition comes from the request context in the
AC actual system, e.g., the request time, the location, etc. In other words, the context of the actual
system is evaluated by real time. SP7 is unable to evaluate the context to yield a boolean decision
as it is returned from the evaluation of the actual system. On the other hand, Condition can be

Copyright (©InfoBeyond Technology, LLC Page 39

incorporated in the policy test if the boolean decision (i.e., True/False) is known. The policy
author can define a condition with “True” or “False” decision to evaluate the Effect of the condition
in policies. This means that SP7T can verify the Effect given the “True” or “False” decision. From
SPT, the policy author can test: (i) What is the Effect for a given “True” of a condition, and
(1i1) What is the Effect for a given “False” of a Condition. The evaluation of “Indeterminate for
condition is not considered in SPT test.

Update Condition Attribute X
Condition Afiribute
Data Type http:/fwww w3.0rg/2001/XMLSchema#boolean b

MName c1
Insert XACML 3 0 Condition

+' Add Choice * | & Add VariableReference
+" Add AftributeSelector
+" Add AttributeDesignator
+ Add AttributeValue
+" Add Function
' Add Apply

Add Apply

Cancel

Figure 25: Condition Editing

SPT provides GUI for a policy author to edit an XACML 3.0 condition which starts by right
clicking on “Condition” in the project tree. “Add a new Condition Attribute” shows up and clicking
on it to pop up a “Add Condition Attribute” window. By choosing “Insert XACML 3.0 Condition”,
you will see a window as shown in Figure As shown in this window, the Data Type of the

condition is set up as boolean. Then, you can name the condition, such as C1 as shown in Figure
23]

Right clicking on “Condition”, it allows you to add “Add Choice” such as “Add VariableRefer-
ence”’, “Add AttributeSeclector”, “Add AttributeDesignator”’, and so on as shown in Figure @
Click on “Add”, these condition elements will be translated into XACML 3.0 code. Meanwhile,
these Condition elements can be modified. Let’s consider the example in Figure The Condi-
tion has three < Apply - - - Apply > elements, an Attribute Designator, and an AttributeSeletor.
They can be added one by one by following the XACML structure as shown in Figure Figure
shows the interface to add an AttributeSeletor that includes the spcifications of a Category,
DataType, MustbePresent, Path, and other optional variables. After clicking on the “Add” button
the XACML 3.0 codes will be added to the condition box. All the elements are similarly added.

7.7 Subject/Resource Inheritance Composition

Upon the composition of attributes, inheritance can be created to reflect the hierarchical subject and
resource attribute structure. Inheritance is an important feature to compose a number of rules with
integrity in the entire policy scope. If a rule is defined/updated/removed at a subject or resource,
its beneficiaries are automatically defined/updated/removed the corresponding rules. Please refer

Copyright (©InfoBeyond Technology, LLC Page 40

Condition Attrioute
Data Type w3 =
MName c1
[Insert XAGML 3 0 Condition
= 2 Apply 3m <Apply F
=50 Apply ig Apply Fu
£ @ Apply o st " areributel,
9 AttributeDesignator Apply
A:?Ey Functionids"urntoasis names:tcixaonl 1. #ifunct lon:string-one-and-snly”
e [XACML AttributeSelector Input Panel %
xacmi:Altribute Selector Attributes
Category " |urn:pasis names:tcxacmi:3 O:attributecategory-resource >
ContextSelectorld
Datalype = | http Hiwww w3 org/2001XML Schema#string &
MustBePresent * - | false ~
Path * [nd:record/md: primaryCarePhysician/md registrationiDitext()
<
XACML is correct! Gancel
=
Figure 26: Add an Condition Element
& HealthCarespt - Security Policy Tool
File Project
: o B . . - L - & & 4 . . - 5 @ +« FRR . = - .
Eal SA-BE-L-8-90 Ah-da- | Q- al-of H-H-®- | B
i Security Palicy Tool [Summary (%) Model Verification (=), Access Privilege Preview
=) n HealthCare
=) Attribute
[+ o Subject
[+ £ Resource :
8- Action (‘subsect inhertance |
[# @ Enmvronment : J
[+ > Condition
= "= Inheritance

[EFF] Subject Inhentance

= Role = Chief of Hospital
Role = Head Nurse
Role = Head Nurse
+'s Resource Inhentance
(=1 £ Model
- () ABAC
1] Muttilevel
o Workflow
—) Access Control Security Requirement
© 4 Indmadual Security Requirement
Separation of Duty Secunity Requirement
& Combinatorial Test Suite
= XACML Editor

Lhélé-s-fehaef of Hospital]

A 4

(Role ‘= Head Nurse]

Figure 27: Inheritance - A Simple Example

Section[5.3] for the details. SPT allows a policy author to graphically create inheritance relations
in an easy way. Figure 27| shows a simple subject inheritance graph that only has one beneficiary
and one originator, denoted by Chief of Hospital — Head Nurse.

Copyright ©InfoBeyond Technology, LLC

Page 41

Inheritance could be the subject inheritance or resource inheritance. The composition of them is
similar. The inheritance composition starts by clicking on the “Inheritance” in the project tree
which will lead you to the inheritance Summary. Inheritance can be graphically built. Consider
the Subject inheritance. Figure 28] shows how the inheritance in Figure 27]is composed and the
process is explained below.

s Inheritance | Summary () Model Verification () Access Privlege Preview

IR Subject Inheritance
'« Resource Inheritance -

= Model Add an Beneficiary
0 ABAC
(a) Click Subject Inheritance to Start (b) Right Click Subject Inheritance
;;; Add Subject Inheritance Beneficiary Y £ Add Subject Inheritance Inherited Va... X
Subject Inheritance FHIERITIETETIE
Beneficiary : Role = Chief of Hospital
Beneficiary Value: |Role = Chief of Hospital
Inherited Value : Role = Head Murse b
Add Cancel Add Cancel
(c) Add a Beneficiary Value (d) Add an Inherited Value

Figure 28: Steps to Create an Inheritance Relation

Create a Subject Inheritance: The addition of an inheritance relation has the following opera-
tions:

e Right click the “Subject Inheritance” in the inheritance graph or in the project tree and select
“Add a New Beneficiary” as shown in Figure 28] (a) and (b). An “Add Subject Inheritance
Beneficiary” window will popup that allows you to choose the “Beneficiary Value”, as shown

in Figure [2§](c),

e Select a “Beneficiary Value”, e.g, Chief of Hospital, from the drop-down menu in an “Add
Subject Inheritance Beneficiary” window and click “Add”, as shown Figure[28](c). After this
step, an “Add Subject Inheritance Inherited Value” window will pop up, and then

e Select an “Inherited Value”, e.g., Head Nurse, from the drop down menu in the “Add
Subject Inheritance Inherited Value” window and click “Add” as shown in Figure 28] (d).

The chosen “Beneficiary Value” will be the Beneficiary and the “Inherited Value” will be the Orig-
inator, e.g., Chief of Hospital — Head Nurse, as described in Figure[3] where the Beneficiary
will automatically inherit the rule composed for the Originator.

Add New Inherited Value To A Beneficiary: A new inheritance relation can be added to the
hierarchical structure by an operation of “Add an Inherited Value” to a selected beneficiary. The
steps are:

Copyright ©InfoBeyond Technology, LLC Page 42

e Right click a selected beneficiary e.g., Role = Head Nurse, and then select “Add an Inher-
ited Value”, and

e Select an “Inherited Value”, e.g., Role = Nurse, from the dropdown menu in the “Add
Subject Inheritance Inherited Value” and click “Add”.

Subject Inheritance

Rale = Chief of Hospital

Role = Head Nurse

[D\vlsuon = Nursing Services]

[Ro!e- = Nurse] [ROIE = Midwife

Rale = Nursing Attendant

Figure 29: An Example Inheritance Graph

By repeating the above steps, you can add as many as inheritance relations to the composing AC
model. A multilevel hierarchical structure can be then composed as a tree. The effort for you to
manage the rule is reduced when more inheritance relations are added. This is because the rules are
automatically prorogated and updated if the rule in the Originator is composed or modified. This
gives a clear view of the AC policies and meanwhile, it reduces the number of rules to compose
and maintain. The rule prorogation principle is discussed in Subsection

SPT provides a visual graph to present the inheritance relations. The graph is shown in the “Sum-
mary” of the “Subject Inheritance”. Clicking “Subject Inheritance”, the “Summary’ tab then shows
the subject inheritance graph. Clicking on the “Inheritance” will lead you to inheritance Summary
tab which shows both the Subject Inheritance and Subject Inheritance graphs. The added inheri-
tance relations will show up on the inheritance graph immediately once the relation is composed.
The inheritance graph can be zoomed in and out by scrolling the mouse up or down respectively.
Meanwhile, the graph is dynamically organized in a way to have a better view. You can also use
the mouse to hold on any blank space to move the entire graph and drag a graph component to
organize the graph in your way.

Delete a Beneficiary/Inherited Value: Any inheritance relation can be deleted from the graph
and the relation is updated to your AC model. Deleting a beneficiary or inherited object has the
following operations:

Copyright ©InfoBeyond Technology, LLC Page 43

& HealthCare.spt - Security Policy Tool
File Project
DelE | 4-8-4-9-0-| A-h- | O-al-of- | B-F-&-
3 Secudty Polley Tool = Summary (Z) Model Verification (), Access Privilege Preview
= HealthCare
Attnbute
& Subject
+ Role ; String
= Division ; String
Adminstration senices
Nursing Sermces
Medical Seraces
Head
Department ; String
Emergency Room
Out-patient
+ B Resource Role = Chief of Hospital Division = Head
i Action
+ @ Envronment t
Condition
Inheritance Y
£ Subject Inheritance [Pclc— = Head Nurse] [Dlvision = Nursing Services 1
Role = Chief of Hospital Update inhented Value
Role = Head Nurse Delete
Rols = Head Nurse p %
Role = Nurse Amed .
= Dnision = Head
Dmision = Mursing Semces
o'« Resource Inhentance
Model
) ABAC
ol Multilevel
od Workflow

Figure 30: Delete a Beneficiary/Inherited Value

e Right click the beneficiary/inherited value that needs to be deleted, such as Division =

Nursing Service as shown in Figure[30} Then, select “Delete”, and

e Click “Yes” in the “Selection an Option” popup window to complete the deletion. The
beneficiary/inherited value and its inherited relations are both deleted from the graph.

Note: In a similar way, you can update a Beneficiary/Inherited Value. It is worth mentioning
that you can edit (i.e., Add, Delete, Update) the inheritance graph according to the actual in-
heritance relations while the corresponding inheritance relations among rules are automatically

updated without additional actions to take.

= Model
oM
ol Mult Add a New ABAC Policy

i Worl |Add a New ABAC Policy|
Access Control Secunty Reguirement

24 Individual Security Reguirement
Separation of Duty Security Requirement

%' Combinatorial Test Suite

XACML Editor

Figure 31: Right Click ABAC to Add a New ABAC Policy

7.8 ABAC Model Composition

After the composition of the attributes and conditions, an AC model can be generated with a set of
AC policies. This section demonstrates the composition of an ABAC access control security model

Copyright (©InfoBeyond Technology, LLC

Page 44

that consists of one or more policies with rules to specify the access permission and the correlated
environments. For the Nursing Service example in Figure [I] the following description shows how
to define the policies in Section[5.5.1]

Create a New ABAC Policy: The composition of a policy includes the operations to define the
policy parameters with a set of rules. Navigating to “ABAC Model” in the project tree, the follow-
ing steps show the creation of a policy:

{3 Add ABAC Policy X
ABAC Policy
ABAC Policy Name Midwife Policy|
Rule Combination Algorithm First_Applicable W

Policy Enforcement Algorithm Deny_Biased

Add Cancel

Figure 32: Add ABAC Policy - Policy Algorithms

Right click “ABAC” under “Model” in the project tree, then select “Add a New ABAC
Policy”, as shown in Figure 31]

Name the ABAC policy, e.g., Midwife Policy as shown in Figure 32}

£} Add ABAC Policy Rule

‘Selected Action Aftributes

Selected Subjed Afributes

Selected Resource Altributes

Patient Record = Prescrption

Rule Composition checklist

OR ~ OR w OR ~
\ \ \ |
® Role = Nursing Attendant v @ (¥) Patient Record = Prescription v ® ® Actions = Read v @
Selected Emvironment Altributes Selected Condition Altributes Seleded Decision
Ay Environment Permit ~
OR ~ OR ~
® Any Emaronment ~ @ Any Condition ~ @

Figure 33: User Interface to Add an Policy Rule

e Choose a “Rule Combination Algorithm” such as First Applicable as shown in Figure [32]
and a “Policy Enforcement Algorithm” such as Deny Based as shown in Figure [32]

Copyright (©InfoBeyond Technology, LLC Page 45

e Click “Add”, then

e An “Add ABAC Policy Rule” window pops out as shown in Figure [33] The composition of

policy rule involves:

— Add Attributes: From the GUI-based interface in Figure[33] it first selects a Subject at-
tribute value (s), e.g., Role = Nursing Attendent, from the Selected Subject Attributes

dropdown menu. The subject dropdown menu lists all early composed Subject at-
tributes and their values. Then, clicking the button @ adds the subject attribute with
a value. On the other hand, ® allows you to remove a selected attribute. In a similar
way, Resource attribute, action, environment, and condition values can be chosen for
the rule composition. In a similar way, Resource, Action, Environmental attributes, and
Condition are composed by choosing the attribute values and adding them into the rule.
It is noted that all rule components including Subject, Resource, Action, Environment,
Condition, and Decision are required to construct a complete policy rule. As shown in
Figure [33] a “Rule Composition Checklist” verifies the integrity and the “And” button
will be activated after all the rule elements are selected.

— Add Rule Decision: As stated, a Decision (i.e., Permit or Deny) has to be chosen

as the expected rule decision. It is noted that all rule components including Subject,
Resource, Action, Environment, Condition, and Decision are required to construct a
complete policy rule. As shown in Figure[33] a “Rule Composition Checklist” verifies
the integrity and the “And” button will be activated only after all the rule elements are
selected. Finally, click “And” to add this rule the policy.

{) Add ABAC Policy Rule

2 subject attribute values are selected by AND.

Selected Subject Aiributes Selected Resource Atinoutes Selected Action Affributes
Depaitment = Emergency Room Patient Record = Prescription Actions = Read
Role = Nursing Attendant
AND ~ »i ﬂ urélng endal oR oR .
AND/OR to combine
the attributes —
® DMISION — vu suny wermes @ | ® Patient Record = Prescription v @ ® Acticns = Read v @
Selected Environment Attnoutes Selected Condition Afinoutes Selected Decision
Perrdl
OR OR ~
® Any Emaronment - @ ® Any Condition - @ Decision with Permit
or Deny for the rule
Rule Composition checklist
Activated with completion of the checklist
Add Cancel

Figure 34: Rule Composition with “AND” Operator

“AND” or “OR” Operators: Multiple attribute values can be selected from the dropdown menu
for rule composition. Figure shows two selected subject attribute values, e.g., Subject :

Department = Emergencyroom & Role =

Nursing Attendent. If multiple attribute val-

ues are added to an attribute (e.g., Subject, Resource, or Environment), “AND” or “OR” operators
will be applied for those attribute values in the different following ways.

Copyright (©InfoBeyond Technology, LLC

Page 46

“AND” Operator: “AND” Operator combines all the attribute values as an aggregated attribute
value that means all the attribute values have to satisfied in a rule for the intended Decision. For
example, when “AND?” is applied to two Subject attribute values in Figure [34) SPT will generate
the following rule:

Subject : Department = Emergency Room; & Role = Nursing Attendent;

Resource : Patient Record = Prescription;

Action : Read,;

Decision : Permat

where two subject attribute values are combined together as an aggregated one in one rule, which
means that Nursing Attendent from Department = Emergency room has the Read accessi-
bility for Resource Patient Record = Prescription. As we can see, “AND” combines attribute
values in one rule.

£} Add ABAC Policy Rule 4 subject attribute values are selected
Selected Subject Atributes OR s seleted Selected Resource Atributes Selected Action Aftributes
Role = Nursing Aftendant Patient Medicare = Dressing care
= |Patiem Medicare = Bathing care
D~ o ™ 'Patient Medicare = Feeding care s
Oationt Maricase SR
® Role = Nursing Attendant v @ ® Patient Medicare = Toileting care v ® Actions = Read v @
Selected Environment Attributes Selected Condition Alfributes Selected Decision
Any Environment Permit
OR v OR ~
® Any Environment v @® ® Any Condition v @

Rule Composition checklist

Add Cancel

Figure 35: Rule Composition with “OR” Operator

“OR” Operator: “OR” Operator is different than “AND” Operator. Figure [35] shows four se-
lected resource attribute values, e.g., Patient Medicare = Dressing care, Patient Medicare =
Bathing care, Patient Medicare = Feeding care, and PatientMedicare = Toileting care.
These resource attribute values are applied to “OR”, and in such a case, they will be individually
considered in separate rules. As a result, SP7T will generate multiple rules and these attribute
values are separated in these rules. For the example in Figure [35] four rules will be generated as
below:

1. Subject : Role = Nursing Attendent; Resource : Patient Medicare = Dressing care;
Action : Read; Decision : Permit

2. Subject : Role = Nursing Attendent; Resource : Patient Medicare = Bathing care;
Action : Read; Decision : Permit

3. Subject : Role = Nursing Attendent; Resource : Patient Medicare = Feeding care;
Action : Read; Decision : Permait

4. Subject : Role = Nursing Attendent; Resource : Patient Medicare = Toileting care;

Copyright ©InfoBeyond Technology, LLC Page 47

Action : Read; Decision : Permit

where four attribute values are separately considered in four different rules, which means Nursing Attendent
has the read accessibility for these four Resources.

£ Summary () Model Verification (=), Access Privilege Preview

Combined two attribute values in one rule
MNursing_Attendant_Policy Summary Search m =

@

Mode! Type Policy Name Rule Combination Algorithm Policy Enforcement Algorithm No. of Rule(s) Time Creates Last Moarfied

Nursing_Attendant_Policy First_Appiicable- Deny_Binsed May 7, 2017 22.36:48 May 7, 201722:3648
Rule (s) defined with selected policy (Nursing_Attendant_Policy): Search [I
Subject Resource Action Decision Inheritance Reiation =3
Rofe = Narsing Attendant, Department = Emergency Room Patient Record = Prescription Actions = Aesd Originated ~
Role = Head Nurse, Department = Emergency Room Patient Record = Prescription Actions = Read Permit Inherited
Role = Chief of Hospital, Department = Emergency Room Patiert Record = Prescription | Agtions = Reag Permit Inherited

(a): AND Operator: Nursing Attendant and Emergency Room

= Summary (2) Model Verification (2], Access Privilege Preview
8 inherited rules due to inheritance relations

Nursing_Artendant_Policy Summary Search 0BEe s
Moce! Type Pslicy Name Rule Combination Algonithm Policy Enforcement Algarthm No. of Rulefs) ®
Nursing_Attendant_Policy First_Applicable Deny_Biased :
i i e B _"F_our attribute values are assigned to four separate rules Seatch e
Subject Resource Action Detision Inheriesace Satetion ®
Roie = Heao Nurse Patient Megicare = Dressing care Actions = Read Permi Inheritec ~
Roie = Cret of kespe | Patent Mesicars = Dressng care | Actions = Rezs I R I "1 inherites | 1
Roie = meas hurse | Paven Megicare = Baving care | actions = Reag I Permt | "inherited |
Roie = Chie! of Hospita | Patient Megicare = Bathing care | Actions = Reag I Permit | Inherited
Roie = Head Nurse | Pauient Megicare = Feeding care | Actions = Read Permit [Inherited
Roie = Chief of Hospits | Patient Meaicare = Feeaing care T Actions = Read T Permit | Inherited
fois = Rese Nurse | Sstent Med care = Toeting care I Actions = Ress sermit T Inherited
Role = Crief of Hosprta | Patient Medicare = Toieting care | actiors = Read | Permit [Tnherites

Patient Medicare = Dressing care | Actions = Reag Permit Origingred
Patient Medicare = Bathing care. | = I Permit | Originatea
Patient Megicare = Feeding care T

Onginated

Roie = Nursing Attendant Actions = Read Originated

(b): “OR” Operator: Dressing Care, Bathing Care, Feeding Care, Toileting Care

Figure 36: Rules Generated for Nursing Attendant Policy

Figure [36| compares the “AND” and “OR” results in the rule composition. Figure[36|(a) shows the
composed role (i.e., the highlighted one) from Figure 34 where two attributes values are integrated
in one rule. In addition to the edited rule, two inherited rules are automatically generated since
the inheritance relation: C'hief of Hospital — Head Nurse — NursingAttendent, which is
composed in the Inheritance. Figure [36] (b) shows four rules using the “OR” Operator in Figure
[B5] It shows that the four attribute values are composed in four separate rules. Similarly, eight
inherited rules are automatically generated since the inheritance relation: C'hief of Hospital —
Head Nurse — Nursing Attendent. It totally results in 12 rules with four originated rules and
eight inherited rules in the example.

Add a New ABAC Rule: A new rule can be added to a policy by right clicking on the policy name
in the project tree (e.g., the above Nursing Attendant Policy) while a blank “Add ABAC Policy
Rule” window pops out as shown in Figure [33] After filling out the rule information and clicking
the “Add” button by following the same steps as shown in Figure 33 the rule (s) will be added to
the policy. In this way, a set of rules can be composed for the policy.

Update/Delete an ABAC Rule: A policy rule can be updated or deleted from a policy. Right
click on the rule name in the project tree that you want to update or delete, tabs of “Update ABAC
Rule” and “Delete” show up. Clicking on “Update ABAC rule” will show an “Update ABAC

Copyright (©InfoBeyond Technology, LLC Page 48

£ Update ABAC Policy Rule x

Selected Subject Atiributes Selected Resource Attributes Selected Action Altributes

Role = Nursing Attendant Patient Medicare = Dressing care Actions = Read
OR w OR w OR
® Any Subject v @ . Any Resource v @ X Any Action v ®
Selected Environment Attributes. Selected Condition Attributes. Selected Decision
Any Environment Any Condition Permit ~
OR ~ OR
Any Environment v @ , Any Condition v @

Rule Compaosition checklist

Cancel

Figure 37: Update an ABAC Policy Rule

Policy Rule” from which the policy rule can be modified, as shown in Figure 37} Clicking on the
“Update” button to redefined the policy. On the other hand, clicking on “Delete” tab, the selected
rule will be removed after clicking on “Yes” to confirm the deletion.

{3 Update ABAC Policy X |
ABAC Policy
ABAC Policy Name Nursing_Attendant_Policy
Rule Combination Algonthm First_Applicable w
Policy Enforcement Algorithm Deny Biased | v

Update Cancel

Figure 38: Update ABAC Policy

Add/Update a New ABAC Policy: An ABAC model could have more than one policy. Right
click on the “ABAC”, a tab of “Add a New ABAC Policy” shows up and click on it. “Add ABAC
Policy” window pops up and it leads you to add a new policy with the same steps from Figure
[31] to Figure [33] Clicking on an existing policy, a tab of “Update ABAC Policy” will lead you to
modify the policy. The information of the Policy Name, Rule Combination Algorithm, and Policy
Enforcement Algorithm can be modified and click on “Update” to save the modification, as shown

in Figure 38|

Copyright (©InfoBeyond Technology, LLC Page 49

Order the ABAC Rules: When a rule is o =

| oqQe

defined, a sequence is assigned as an or- 5 0 ABAC

der Of the rule in the pOllcy Figure @ = Midwife Policy ; First-applicable & Deny Biased

ShOWS M d f P l . that has 26 mles 1. Subject - Role = Midwife; Resource : Patient Record = Personal

nawtje oucy

and they are ordered in a sequence from 1

to 26. As some rule-combining algorithms, : A , . .
. Subject : Role = Midwife; Resource : Patient Medicare = Dressin

3
4
) | oS
such as Ordered-deny-overrldes, takes the 6. Subject - Role = Midwife; Resource - Patient Medicare = Dressin
T
8
9

2. Subject - Role = Midwife; Resource : Patient Record = Personal

Subject : Role = Midwife; Resource : Patient Record = Personal
Subject : Role = Midwife; Resource : Patient Medicare = Dressin

Order Of the rules into account fOf the pOl- Subject : Role = Midwife; Resource : Patient Medicare = Bathing

. D .« . 1 . D .. f l Subject : Role = Midwife; Resource : Patient Medicare = Bathing
lcy ecision evaluation. €cision or a pO - - Subject : Role = Midwife; Resource : Patient Medicare = Bathing

icy Could be different When 1t iS tested under 10. Subject : Role = Midwife; Resource : Patient Medicare = Feedir
: . 11. Subject : Role = Midwife; Resource : Patient Medicare = Feedir
dlfferent rule Orders mn the case that the I'UIC- i 12. Subgect : Role = Midwife; Resource : Patient Medicare = Feedir
Combining algorithm is impaCted by the rule 13. Subject : Role = Midwife; Resource - Patient Medicare = Tolietit
Sequence. For SUCh a reason, S’IDT aHOWS 14. Subject : Role = Midwife; Resource : Patient Medicare = Tolietit
. : 15. Subject : Role = Midwife; Resource - Patient Medicare = Tolieti

the adJUStment Of the Sequence Of the mles i 16. Subject : Role = Midwife; Resource : Patient Medicare = Cathet

in a policy. The adjustment is accomplished 17. Subject : Role = Midwife; Resource : Patient Medicare = Cathet

. - . 18. Subject - Role = Midwife; Resource - Patient Medicare = Cathet
by a Cth to Drag and drOp Operatlon' 19. Subject : Role = Midwife & Department = Emergency Room; Re

20. Subject : Role = Midwife & Department = Emergency Room; Re

e Click and Hold on a Policy Rule: | om,
GiVing a pOllcy rule fOf adjustment i 22. Subject : Role = Midwife & Department = Emergency Room; Re

’ : 23. Subject : Role = Midwife & Department = Emergency Room; Re

you can choose this rule by CliCking 24_ Subject - Role = Midwife & Department = Emergency Room; Re

and holdlng on lt i 25. Subject : Role = Midwife; Resource : Patient Record = Prescrip
i 26. Subject - Role = Midwife; Resource - Patient Record = Medical

=~ Nursing Attendant Policy ; First-applicable & Deny Biased

Subject : Role = Midwife & Department = Emergency Room; Re

e Drag-and-Drop the Chosen Policy

Subject : Role = Nurse Attendant; Resource - Patient Medicare =

Rule: Whlle holdlng the Chosen mle’ 2 Subject - Role = Nurse Attendant; Resource - Patient Medicare =

dra the OliC and then drO 3. Subject : Role = Nurse Attendant; Resource : Patient Medicare =

‘you can g p y p 4. Subject : Role = Nurse Attendant; Resource : Patient Medicare =

1t to a new sequence where you want 5. Subject - Role = Nurse Attendant; Resource - Patient Medicare =

to place_ 6. Subject : Role = Nurse Attendant; Resource : Patient Medicare =

7. Subject : Role = Nurse Attendant; Resource : Patient Medicare =

8. Subject : Role = Nurse Attendant; Resource : Patient Medicare =

For example, you can click and hold a rule 9. Subject : Role = Nurse Attendant; Resource - Patient Medicare =
3 (i'e.’ il'l the Sequence 3)’ drag and drOp lt 10. Subject : Role = Nurse Attendant; Resource - Patient Medicare 3

11 Suhiect - Role = Nurse Attendant- Resnurce - Patient Madicare

to the sequence between 1 and 2. This will | ¢ >

exchange the sequence of the rule 2 and rule
3. Figure 39: Rule Sequence

Note: A policy is not assigned with a sequence number when the policy is created. For applying
order-related policy algorithm, the policies are ordered by the sequence of the selection and a
Drag-to-reorder function is provided to adjust the sequence.

7.9 Multilevel Security Model Composition

A MultiLevel Security Model as illustrated in Subsection [5.5.2] can be composed by first clicking
the ”"Multilevel” under “Model” in the project tree. For this model, one or more policies can be
defined for multilevel access control. Upon the right click of “Multilevel” and the selection of “Add
a New Multilevel Policy” from the menu, a rule composition window namely, “Add Multilevel
Policy Rule”, will pop up as shown in Figure 0] Four steps are shown in Figure #0|for composing

Copyright ©InfoBeyond Technology, LLC Page 50

.1l Add Multilevel Policy Rule
Enter Policy Name

Policy Name |

Selected Subject Attributes

List of selected Resource attributes with ranks

1): Input a Policy

Nam

Click to remove a

subject attribute

|
|
|
|
|
|
)

Role = Private

(3) Enter the Subject rank
level,e.g., 1,2, ..

/
/

+ | Rank

(2): Choose a Policy
enforcement algorithm

Sel& y Enforcement Algorithm

Policy Enforcement Algorithm - Deny_Biased

Selected Resource Aftributes

List of selected Resource attributes with ranks

Document = Unclassified

(4) Enter the Resource
rank level, e.g., 1, 2, ..

/
/

~ Rank

he Bigoer the number |

Click to ada the St]l;j;ect with the
rank

__— Default Multilevel Action Alinibutes

Read and Write are two default actions for ’
Multilevel Security Model /J Default Multilevel Security Model
= properties

=

Default Multilevel Rule Properties —

Rule Compasition checklist

Click to generate the policy

—

S
Cancel

Figure 40: “MultiLevel” Security Model Composition

a policy. The first step is to define a policy name in the input box of “Policy Name”. The second
step is to choose a policy algorithm from the dropdown menu of “Policy Enforcement Algorithm”.
The third step is to compose the Subject attributes and specify their security rank, i.e., 1,2,---,
where the bigger the number the higher the rank. The selected subject attribute value with its rank
is added to the list of the “Selected Subject Attributes” by clicking on o button. Meanwhile, you
can remove an attribute value from the list using ® button. The next step is similar which is to
compose the Resource attributes as well as the rank. In the end, clicking “Add” will add the policy
into the Multilevel AC model.

Figure d1]showcases an example for MultiLevel Security Model composition. The policy is named
as MLPolicy as shown in Figure #1] In this example, eight Subject attribute values are specified
with different levels (1 —8), e.g., Private is a Role attribute value in rank 1. It is worth mentioning
that the Role attribute and its values are all composed before the model composition, which uses
the method as illustrated in Subsection[7.5.1] Figure 41 shows the Resource attribute values with
ranks. As shown in Figure 1] the document is classified into four ranks, i.e., 1—Unclassi fied, 2—
Classified, 3 — Secret, 4 — Top Secret. The higher rank represents a higher security level.
Clicking on the “Add” button generates the multilevel policy.

A multilevel policy is built by admitting the Multilevel Security Model described in Subsection
[5.5.2] Decision for each rule will be automatically generated according to Bell-Lapadula model and
Biba Model. Due to this, there are no option (e.g., “Selected Decision” as shown in Figure [33)) to
choose a Decision (i.e., Permit or Deny). Giving the example in Figure #1] clicking on M LPolicy

Copyright (©InfoBeyond Technology, LLC Page 51

W1l Add Muitilevel Policy Rule
Enter Policy Mame

Policy Name : MLPolicy

Selected Subject Attributes

Role = Private. Rank - 1

Role = Pnvate First Class, Rank - 2
Role = Corporal; Rank - 3

Rele = Sergeant, Rank - 4

Select Policy Enforcement Algorithm

Policy Enforcement Algorthm - Deny_Biased v

Selecled Resource Attnbutes

Document = Unclassified. Rank - 1
Document = Confidential. Rank - 2
Document = Secret, Rank - 3
Document = Top Secret, Rank - 4

Role = Staff Sergant; Rank - 5
Role = Sergeant First Class, Rank - 6
Role = Master Sergeant; Rank - 7

|] |

® Role = Sergeant Major v Rank 8 ® ® Document = Top Secret ~ Rank 4

The Bigger the number the mghsr the The Bigger the number the highes the

Default Multilevel Action Attrisutes

Default Multilevel Rule Properties

ell-LaPadula Mode Ne Write Down (Biba Model

Rule Composition checldist

Add Cancel

Figure 41: A Example of MultiLevel Policy Composition

will navigate to the policy summary. Figure 42| shows the M L Policy summary composed from
Figure A1} The summary lists the Subject and Resource attribute values and the ranks. It shows
that there are 64 rules that are totally composed. This is because the Subject attribute Role has
defined 8 attribute values and the Resource attribute Document has 4 ranked values in Figure 1]
Therefore, the total number of multilevel rules is:

8§ x4 x2=064)

where 2 represents Read and W rite operations in the Bell-Lapadula and Biba models, respec-
tively.

In addition to multilevel Subject and Resource values, Figure 42| lists the M L Policy rules with
the detailed rule information, i.e., information of the Subject, Resource, Actions, Decisions, and
Inheritance Relations. The detailed rules can be viewed from Excel or a separate page. They also
could be printed if a printer is installed in the Computer. All the policy rules are also listed under
the “MLPolicy” in the policy editing zone. Instead of one policy, a Multilevel Security Model
could have multiple policies and each policy has its own attributes with ranks.

Update/Delete Multilevel Policy: It is worth mentioning that it is not allowable to individually
update/delete a multilevel policy rule as the editing of a rule may infringe the policy integrity, im-
posed by the Multilevel Security Model. Due to this, the updating/deleting functions for individual

Copyright (©InfoBeyond Technology, LLC Page 52

=) Summary O Model Verification '-J‘ Access Privilege Preview PoIicy Summary

64 Rules

Multilevel policy(s) Summary

Modei Type Policy Name Rule Combination Algorithm Policy Enforcement Algorithm Ne. of Rule(s,

Multiievel

Search [= ¢ Resource level (s) defined with selected policy (MLPolicy): Search E =R
3 = B R ©
~ ~
MLPelicy Document = Secret
Documert = Top Secret
s Resource Attribute Values ‘ ‘ Ranks ‘
Subject Attribute Values ‘ ‘ Ranks ‘ Click to view all rules ‘

Rule details
v v
Rule{s) applying No Read Up({Bell-LaPadula Model] & No Write Down{Biba Model) with selected muiltilevel policy (MLPolicy): Search = @
Subject esource ecision nher on (-3

sie = Prican ccurment = Urciass '] Permit

Figure 42: M LPolicy Summary for the Example in Figure

rules are disabled, i.e., no operation by right clicking any rules under “MLPolicy” in the policy
tree. This prevents the infringement of the integrity of the Multilevel Security Model. On the other
hand, a composed multilevel policy can be updated as a whole and the revision will still admit to
the Multilevel Security Model in Subsection[5.5.2] Updating multilevel policy is performed by:

e Navigating to Multilevel Policy: Navigate to “Multilevel” and right click the multilevel
policy, e.g., M L Policy, that needs to be updated. It then shows an option of “Update Mul-
tilevel Policy” and you click it. An “Update Multilevel Policy Rule” window will show up.
The “Update Multilevel Policy Rule” window is similar to Figure #1] with the filling of the
previously configured policy information.

e Modify the Multilevel Policy: “Update Multilevel Policy Rule” window allows you to edit
all the policy information, e.g., clicking ® to remove a selected attribute value and & to add
new an attribute value with a rank.

e Update: Click “Update” to finish the operation.

Further, a composed MultiLevel Policy can be removed. This can be done by right-clicking the
policy (e.g., M LPolicy in the project tree) that needs to be deleted. Click “Delete”, and then
click “Yes” to confirm the deletion. Along with the deletion of the policy, all the rules will be
automatically deleted.

Copyright (©InfoBeyond Technology, LLC Page 53

ad Add Workflow Policy X
Workflow Policy
Workflow Policy Name B!uepnnt|
Rule Combination Algorithm | First_Applicable b
Paolicy Enforcement Algonthm | Deny_Biased o
Add Cancel

Figure 43: Interface to Add a Workflow Policy

7.10 Workflow Model

A Workflow Security Model as illustrated in Subsection [5.5.3] can be composed by first clicking
the "Workflow” under “Model” in the project tree. For this model, each policy is defined as an
association of a process state. The accomplishment of the process state acts as an extra condition
for the process in the next state.

of Add Workflow Policy Rule X

Seleded Process State
v

Selected Subject Altributes Selected Resource Aftricutes Selected Action Attributes
I I I

OR v OR ~ OR ~

Any Subject - ® x Any Resource v @ . Any Action v @

Selected Environment Attributes Selected Condition Aftributes Selected Decision

Permit
OR ~ OR
Any Environment v @ . Any Condition v @

Rule Compaosition Checklist

Figure 44: Interface to Add Rule for a Workflow Policy

Upon the right click of “Workflow”, “Add a New Workflow Policy” will show up and clicking it

Copyright (©InfoBeyond Technology, LLC Page 54

will result in a window of “Add Workflow Policy” as shown in Figure 3] This window is to give
a name for the policy (e.g., Blueprint in Figure 43)) and choose a Rule Combination Algorithm and
Policy Enforcement algorithms from drop-down menus. The policy will be added after clicking
on the “Add” button in the “Add Workflow Policy” window. Hereafter, “Add Workflow Policy
Rule” window is popped out for rule composition, as shown in Figure 4] Different than ABAC
and Multilevel Security Models, a rule for a Workflow policy has to choose a Process State (i.e.,
1,2,---) that indicates the rule has to be performed in such a state before moving to the next
Process State.

wd Add Workflow Policy Rule |
Selecled Process Stale
1 ~
Selected Sudjedt Atndutes Selected Resource Atinputes Selected Achon Aftnoutes
Role = Client Design = Blueprint Workflow_Actions = Review and Add Note
OR ~ OR ~ OR ~
® Role = Client v @ ® Design = Bluspnnt ~ @ ® Workflow_Actions = Review and Add Nate ~ @
Selected Environment Altributes Selected Condition Afiributes Selected Decision
Perit
OR w OR
¥ = g =3
® Any Emironment v @ ® Any Condition i @W‘
Rule Composition Checkdist
Add Cancel

Figure 45: Rule Composition for a Blueprint Policy

Figure [45] shows the rule composition of the Blueprint example that is illustrated in Subsection
[5.5.3] It provides b and ® buttons to add an attribute value from the dropdown menu or remove a
attribute value. It is noted that all the attributes are composed in prior by following the operations
as discussed in Subsection[7.5.1]and we ignore the illustration of these steps in this example. The
“ADD” and “OR” operators have the same logic combination of two or more attribute value in rule
composition. By clicking the “Add” button, Figure 5| will generate the following rule:

ProcessState = 1; Subject : Role = Client; Resource; Design = Blueprint;
Work flow Action = Review and Add Node; Decision : Permit

After the creation of the first rule, one or more rules can be composed in a similar way. It first right
clicks the “Policy Name” under “Workflow” in the project tree and it shows a tab of “Add a New
Workflow Rule”. Clicking “Add a New Workflow Rule”, “Add Workflow Policy Rule” as shown
in Figure [44] will pop up such that a new rule can be composed. For the Blueprint example in
Subsection [5.5.3] the other three rules are:

ProcessState = 2; Subject : Role = Engineer; Resource : Design = Blueprint;
Work flow Action = Review and Add Node; Decision : Permit

Copyright (©InfoBeyond Technology, LLC Page 55

ProcessState = 3; Subject : Role = Engineer; Resource : Design = Blueprint,;
Work flow Action = Review; Decision : Permit

ProcessState = 4; Subject : Role = Builder; Resource : Design = Blueprint;
Work flow Action = Review; Decision : Permit

7 Summary (Z) Model Verification () Access Privilege Preview PO|iCy Summary ‘ ‘ Number of Rules: 4
Blueprint Summary Search R
el Type Policy Name fule Compination Algorthm Policy Enforcement Algorithm No. of Rule(s, Time Crestes Last Mogifieg 2
Mayg, 2017 13:28:10 May 9, 2017 13.28:10 :
Rule (3) defned with selected policy (Blueprint): The Details of the composed four rules. r— 0=
Pracecs State sutject Recource ey T Deczior rrertance Reianon]
1 Ruie = Client Design = Blugprint Permt Criginates &

Rote = Enginesr I Design = Blueprim Permit | Originates

Role = Engneer Design = Bluepnnt et Originates

] | Role = Buiger Desgr = Blueonnt Permt Origirates

Process State: 1-4

Figure 46: Blueprint Workflow Rules

Figure 4] shows the summary of the composed Blueprint policy which has four rules. The policy
and rule information is also displayed in the policy tree. A workflow could have more than one
policies and the policy composition have the same process as discussed above. Meanwhile, the
policy can be updated to revise the policy, such as changing the policy name, rule combination
algorithm, or policy enforcement algorithm. The policy rule can be updated with revised process
state, attribute names, etc. Meanwhile, a policy rule can be removed by “Delete” from the options
by right-clicking the rule under the policy (e.g., “Blueprint”) in the policy editing zone. Similarly,
a policy can be deleted which will remove all the rules under this policy.

Add Security Requirement Schema X

Input Panel

e L E T N ursing Attendant Policy Tests

Add Cancel

Figure 47: Create a Security Requirement Schema

7.11 Access Control Security Requirement

The composed policies in each AC model are tested and analyzed with the use of AC Security
Requirements. AC Security Requirements are the security request cases (i.e., acting as security
request in the real AC system) that are used to test the AC effectiveness against the composed AC
policy. They specifically verify if the composed AC policies can achieve the intended AC results

Copyright (©InfoBeyond Technology, LLC Page 56

(Permit or Deny) or not. This checks whether there are AC flaws in the policies or not. Please refer
to Subsection[6.2]for the AC Security Requirement background knowledge. This section illustrates
how AC security requirements are composed. SPT supports the composition of (i) Individual
Security Requirement, (ii) Separation of Duty Security Requirement, and (iii) Combinatorial Test
Suites, as illustrated in the following subsections.

Add Individual Security Requirement X
Selected Subject Attributes Selected Resource Aftributes Selected Action Altnibutes
Role = Nursing Attendant Patient Madicare = Dressing care
OR OR « OR ~
L . J
® Role = Nursing Attendant v @ ® Patient Medicare = Dressing care v ® ® Actions = Read v @
Selected Environment Altributes Selected Condition Altributes Selected Decision
Permit
OR ~ OR ~ |
® Any Emvironment v @ ® Any Condition ~
Individual Security Requirement Composition Checklist
Add Cancel

Figure 48: Create an AC Security Requirement

7.11.1 Individual Security Requirement

SPT uses the concept of Schema to organize the individual security requirements into a group.
A schema can be regarded as a name for a group of the AC Security Requirements. A schema
is generated by right click the “Individual Security Requirement” under “Access Control Security
Requirement” in the project tree and then hitting “Add a New Security Requirement Schema”,
which will result in the window in Figure #7] Using the Nursing Service as an example, a schema
is named as Nursing Attendant Policy Tests, which is shown in Figure After creating the
schema, an “Add Individual Security Requirement” window, as shown in in Figure 48] pops out
and from this window, an AC security requirement can be composed. Filling out the attributes
and selecting other parameters as shown in Figure @8] the following statement of AC Security
Requirement is generated:

Subject : Role = Nursing Attendant; Resource : Patient Medicare = Dressing Care;
Action = Read; Decision : Permit

The above AC Security Requirement is to verify if it is TRUE or FALSE that an Nursing Attendant
is permitted to read the patient resource of Dressing Care. The above AC Security Requirement
can be tested against all the composed ABAC policy (e.g., a policy with the rules in Figure [36)
with a testing method. Similarly, a number of AC Security Requirements can be composed for

Copyright (©InfoBeyond Technology, LLC Page 57

the Nursing Attendant Policy Tests schema. For example, the following Security Requirement
can be generated by selecting a Delete Action:

Subject : Role = Nursing Attendant; Resource : Patient Medicare = Dressing Care;
Action = Delete; Decision : Permit

2 Sy © i Votcn ©
- ‘ Number of individual security requirements: 2 ‘

Nursing_Attendant_Policy_Tests Summary Search ﬂl J i!'
Security Requirement Type Schems Name No. of Securty Requiremen Time Crested Last Moditied =
INDIVIDUAL Nursing_Attendant_Policy_Tests 1 May 8. 2017 17:26:34 May 8. 2017 172634 :
Security Requirement (5] defined under selected Requirement Schema {Nursing_Attendant_Policy_Tests): \M@M Search [
Subject Resource Agtien Decision]
Role = Nursing Attendant Patient Medicare = Dressing care Actions = Read Permit ~

Role = Nursing Attendant [Patiert Megicare = Dressing rare | Artions = Delete | Pesmit |

Figure 49: Summary of the two Generated AC Security Requirement

Clicking on the Nursing Attendant Policy Tests Schema will be navigated to the schema Secu-
rity Requirement summary. Figure [50]shows the schema information (e.g., Security Requirement
Type, Schema Name, Number of Security Requirements,) and the details of each generated AC
security requirements.

) Add Individual Security Requirement X
Selected Subject Altributes Selected Resource Atributes Selected Action Aftributes
Role = Nursing Attendant Patient Medicare = Dressing care
Patient Medicare = Bathing care
L o Bl |Patient Medicare = Feeding care i
Patient Medicare = Toileting care
® Role = Nursing Attendant v @ (@ Patient Medicare = Toileting care v @ ® Actions = Read v @
Selected Emironment Attributes. Selected Condition Attributes Selected Decision
Any Condition P <
OR ~ OR ~
® Any Environment v @ ® Any Condition ~ ﬂ:m

Indnidual Security Reguirement Compaosition Checklist

Choo

se Resources

Chaose Emaronments

Figure 50: “OR” to Create Multiple Security Requirement

Multiple Security Requirements can be added at one time from the “Add Individual Security
Requirement” window by selecting “OR” to combine multiple attributes. Figure [50] shows that
Patient Medicare = Dressing care, Patient Medicare = Bathing care, Patient Medicare =
Feeding care, and PatientMedicare = Toileting care can all added by “OR” operator in the
Resource attributes such that four Security Requirements will be generated. If you further choose

Copyright (©InfoBeyond Technology, LLC Page 58

two action attributes, e.g., Read and Update, by “OR” operator, there will generate eight AC
Security Requirements, e.g., 4 x 2 = §, in the schema.

Add Individual Security Requirement X
Selected Subjedt Attributes Selected Resource Attributes Selected Adtion Aftributes

Dadsion = Nursing Senices Patient Record = Presciiption

AND Department = Emergency Room or oRr
iy ~ ~
Role = Nursing Attendant
Raole = Nursing Attendant v @ ® Patient Record = Prescription v @ 0, Actions = Create v @
Selected Environment Atnibutes Selected Condition Attributes Selected Decision

Any Environment Any Condition Pkt~

OR OR ~
Any Emironment v~ @ ® Any Condition >k @ ;
Individual Security Requirement Composition Checklist
Add Cancel

Figure 51: “AND” to Create Multiple Security Requirement
Note: Inheritance is not applied to Security Requirements as they are not rules.

To Add/Update/Delete Individual Security Requirements To an Existing Schema: New Se-
curity Requirements can be added to a schema with a right click of the schema under “Individual
Security Requirement”, e.g., Nursing Attendant Policy Tests. A popup window as in Figure
will appear for composing one or more new Security Requirement. Figure 51| shows an example
of “AND” three attributes for composing Security Requirement. By using the “Add” operator, the
following Security Requirement will be generated:

Subject : Division = Nursing Services &

Department = Emergency Room & Role = Nursing Attendant;

Resource : Patient Record = Prescription Care; Action : Action = Create;
Decision : Permat

The Security Requirement says that the Nursing Attendant from Emergency Room of the Nurs-
ing Service division can create a Prescription record for a patient. In the same way, more Security
Requirements could be added to the Schema.

To Update an Individual Security Requirement: A Security Requirement in a schema can be
updated with modification. This operation can be initiated by right-clicking a selected security
requirement and you will see the tabs of “Update Security Requirement”. Clicking the tab will have
the “Update Individual Security Requirement” window for you to modify the security requirement
by adding and removing attributes, or changing the Decision. In the end, clicking “Update” to
confirm the revision.

To Delete an Individual Security Requirement/Schema: This is to right-click the schema or

Copyright (©InfoBeyond Technology, LLC Page 59

security requirement that needs to be deleted and hit “Delete”. In the pop out box, click “Yes” to
confirm the deletion. Deleting a schema will remove all the Security Requirements.

Add SOD Security Requirement % |
Selected Subject Attridutes Selected Resource Attributes Selected Action Attributes

OR |~ OR OR v

Any Subject - @ Any Resource v @ Any Action v @

Selected Enaronment Alfributes Selected Condition Altributes Selected Decision
Permit ~

OR: OR ~

Any Environment v @ Any Condition v @

Security Requirement Composition Checkist
(1) Filling in the form to generate one
or more Security Requirement

e Condit (2) Inset the Security Requirements into
‘ A box to list all the composed Security SOD (Separation of Duty) list
Requirements

Remove a selected Security
Requirement from the list

Insert into SOD

Separation of Duty Security Requirement List

% (3) Create the Separation of Duty

Cancel

Figure 52: Composition of a Separation of Duty Security Requirement

7.11.2 Separation of Duty Security Requirements

Individual Security Requirement is utilized to test the AC flaw (e.g., Error Type 1 - Block Privilege)
caused by single AC request. Differently, Separation of Duty Security Requirements is used to test
the AC flaw (e.g., Error Type 8) caused by two or more different correlated security requirements. It
evaluates the access right with more than one AC Subjects, Resources, or Actions to detect Conflict
of Interest that may cause fraud or information leakage. More specifically, the AC decisions of
these requirements are evaluated in a correlated way, e.g., Permit of a Security Requirement A
conflicts the Permit of a Security Requirement 5.

The composition of Separation of Duty Security Requirement is initiated by right click the “Sepa-
ration of Duty Security Requirement” in the project tree. It will lead to a tab of “Add a New SOD
Security Requirement” and click it will have the window as shown in Figure[52] which shows three
steps to add a Separation of Duty Security Requirement:

e Create a Security Requirement: The first step is to fill out the form of attributes, condi-
tion, and permission in order to compose a Security Requirement. This follows the same
operations previously discussed in Figure 48] Figure [50] and Figure

e Insert the Security Requirement into SoD List: The second step is to insert the compos-
ing Security Requirement into a “Separation of Duty Security Requirement List”. If all the

Copyright ©InfoBeyond Technology, LLC Page 60

elements in the “Individual Security Requirement Checklist” are checked, the composing
Security Requirement is complete. As a result, the “Insert of SoD” button will be activated
and clicking it adds the composing Security Requirement into the “Separation of Duty Secu-
rity Requirement List”. Step 1 and Step 2 is repeated to add multiple Security Requirements
into the “Separation of Duty Security Requirement List”. If you have any Security Require-
ment is wrongly composed, you can first select this Security Requirement in the list and click
“Remove” to remove it from the list.

e Create a Separation of Duty Security Requirement: When you have two or more Security
Requirements are inserted in the “Separation of Duty Security Requirement List” you can
click the “Add” button to add the Separation of Duty Security Requirement.

Add SOD Security Requirement X
Selected Subject Atiributes Selected Resource Aftributes Selected Action Attridutes
OR OR OR
Role = Mursing Attendant “ @ Patient Medicare = Dressing care v @ Actions = Delete v @
Selected Environment Attributes Selected Condition Attrisutes Selected Decision
Permit ~
OR OR
Any Environment v @ X Any Condition v @

Individual Secunty Requirement Compasition Checklist

Security Requirement 1
¥ Req Two Security Requirements are inserted to

the list

Separation of Duty Security Requirement List
Process State = & Role = Nursing Attendant & Patient Medicare = Dressing care & Actions = Delete & ->Permit
Process State = & Role = Nursing Attendant & Patient Medicare = Dressing care & Actions = Create & ->Permit

Security Requirement 2

(%) Remove

Add Cancel

Figure 53: An Example of a Separation of Duty Security Requirement

Generally, one Separation of Duty Security Requirement includes two security requirements to
state a Conflict of Interest, e.g., two actions of a role are conflicted on each other. Figure@ shows
an example of a Separation of Duty Security Requirement that includes two different Security Re-
quirements. In some case, multiple security requirements are required to express the Conflict of
Interest by a Separation of Duty Security Requirement, e.g., multiparty Conflict of Interests. By
clicking on the “Add” button, the Separation of Duty Security Requirement will be added under
the tab of “Separation of Duty Security Requirement” in the project tree. SPT will automatically
generate a schema name in the form of SOD ¢, where 7 is the generated sequence number. The
sequence number indicates that a schema could have a serial of Separation of Duty Security Re-

Copyright ©InfoBeyond Technology, LLC Page 61

quirements, such as Conflicts of Interest with colleagues, vendors and others whichever that are
appropriate in the practice, e.g., healthcare and financial services.

Update Individual Security Requirement X
Selected Subject Aftributes Selected Resource Attributes Selected Action Aftributes
Role = Mursing Attendant Patient Medicare = Dressing care Actions = Delete
BR] ~ O v OR ~
Any Subject v @ Any Resource v @ Any Action v @
Selecled Environment Atiributes Selected Condition Attributes Selected Dedision
Any Emaronment Any Condition Permit -
OR ~ OR ~
Any Environment v Any Condition =) m .
Y @ ¥ (1): Revising the attributes,

Condition, and Decision

Individual Security Requirement Composition Checklist

(2): Click “Update” to confirm the
revision

Update Cancel

Figure 54: Update a Security Requirement SOD i

Update a Separation of Duty Security Requirement: A defined Separation of Duty Security
Requirement can be updated by modifying each security requirement. If you right click SOD 1
(e.g., SOD 1), you can add new Security Requirement by selecting “Add New SOD Security
Requirement (s)”. Under the SOD 1 in the project tree, if you right click on a specific Security
Requirement, an option of “Update Security Requirement” appears, as shown in Figure[54] After
clicking on this option, an “Update Individual Security Requirement” will pop out for you to edit
(e.g., add and delete) the Attributes, Condition, and Decision. Upon the revision of the Security
Requirement, click “Update” to confirm the modification.

Add/Delete a Security Requirement for a SOD Schema: A new Security Requirement can be
added to a SOD ¢ schema by right clicking the selected SOD ¢ (e.g., SOD 1) and then hit the
“Add New Individual Security Requirement” option. A blank window similar to Figure [54| will
pop out which allows you to define a new Security Requirement and add it into SO D ¢ schema. In
addition, a selected Security Requirement can be deleted by a “Delete” option which appears by
right clicking on a specific Security Requirement. Furthermore, a SOD ¢ schema can be deleted
by right clicking the selected SOD i (e.g., SOD 1) and click the “Delete” option.

Copyright (©InfoBeyond Technology, LLC Page 62

4» Combinatorial Test Cases X

Selected Degree of Coverage
O 1Wa;.' 0.05 % of coverage
(O 2-Way 0.8 % of coverage
(O 3-Way 6.33 % of coverage
(O 4-Way 27.83 % of coverage
(05 -Way 69.27 % of coverage
(O 6-Way 100 % of coverage

Add Cancel

Figure 55: Combinatorial Test Suite Generation Interface

7.11.3 Combinatorial Test Suite

Individual Security Requirements generate specific security requests manually configured as shown
in Figure 48] Combinatorial Test Suite is an exhaustive collection of t — way Individual Security
Requirements, where ¢ is the number of interactions of Attributes, Condition, and Decisions for
Security Requirement composition. Considering all possible ¢ — way combinations, this approach
can provide compressive generation of Security Requirements for policy test. It has two steps to
generate a Combinatorial Test Suite. The first step is to right click “Combinatorial Test Suite” in
the project tree such that an option of “Add New Combinatorial Test Suite” appears. Clicking this
option will give an interface as shown in Figure[55] The second step is to choose an ¢t — way option
and then click on “Add” to generate a Combinatorial Test Suite.

Copyright (©InfoBeyond Technology, LLC Page 63

‘ Click to enlarge the view of the

[5] Summary () Model Verification (2} Access Privilege Preview security requirements

Number of Security Requirements ‘

Combinatorial Test Suite{s) Summary
Security Requirement Type Schems Name

May 11, 2017 10:53:25

Figure 56: An Example of Combinatorial Test Suite (4 — way)

Figure [56] shows an example of a generated Combinatorial Test Suite with the Nursing Service
ABAC model, which is a 4 — way Combinatorial Test Suite. It has 2907 Individual Security
Requirements and all these requirements are listed in the Summary table. It is noted that the pol-
icy author only needs to choose one test suite as they are duplications. The individual Security
Requirements in 2 — way Combinatorial Test Suite includes all the requirements in a 1 — way
Combinatorial Test Suite, and so on. 2 — way, 3 — way, or 4 — way are recommended, which
specifically is determined by the Probability of AC flaw detection and the verification time over-
head, as explained below.

Figure [55indicates that SP7 allows a maximal ¢ of six as it could be four variables of attributes
(Subject, Resource, Action, and Environment), one Condition, and one Decision:

laz =4+1+1=6

where 6 — way Combinatorial Test Suite is a full collection of all Security Requirements and the
evaluation of them reaches to 100% of flaw detection probability.

For each ¢, a Degree of Coverage is calculated as shown in Figure [55] The degree of Coverage is
the percentage of Individual Security Requirements that will be generated by ¢ — way interactions
compared to the total number of Individual Security Requirements possible. Figure [S5]shows that
the Degree of Coverage is 0.8% in the example for the 2 — way Combinatorial Test Suite. It can be
seen that a larger ¢ has a higher Degree of Coverage as shown in Figure [55] Meanwhile, a Degree

Copyright (©InfoBeyond Technology, LLC Page 64

Table 1: Probability of AC Flaw Detection

1 —way 10% — 40%
2 — way 50% — 90%
3 — way 75% — 99%
4 — way 90% — 100%
5 — way 96% — 100%
6 — way 100%

of Coverage will result in a Probability of AC flaw detection, which is the probability that an AC
flaw can be detected. Table [I]shows the estimated Probability of AC flaw detection corresponding
to different ¢ — way suites. The results in Table [I]is an estimation based on the prior experiments
and the actual value is hard to provide in the SPT tool. It shows 3 — way could generally achieve
a very high flaw detection probability and 4 — way achieves an even higher security confidence.

On the other hand, a larger ¢ will cause more time for test suite generation and verification .
At first, for a larger ¢, SPT will take a longer time to generate the security requirements for
Combinatorial Test Suite. As the generation is automatically computed in SP7T, such a time may
not be significant compared to the time for verifying each testing results using the Combinatorial
Test Suite. Upon the test which will be illustrated in the Subsection[7.12] the policy author needs to
check the verification results of all the Security Requirements and it could be very time-consuming
as the Security Requirements could be thousands or more. In other words, the policy author needs
to humanly review the testing results to detect AC flaws. Therefore, the heavy time overhead, e.g.,
hours to days, should be considered as a key factor in ¢ selection.

Copyright (©InfoBeyond Technology, LLC Page 65

7.12 Policy Testing and Analysis

Upon the composition of an AC model with policies, policy testing and analysis can be then con-
ducted to effectively identify the AC flaws and conveniently fix them. These flaws could be any
of errors as listed in Subsection [6.4] For the purpose of AC flaw inspection and correction, SP7T
provides various policy testing and analyzing approaches and they are discussed in the following
subsections.

7.12.1 Integrity and Consistence Check

During the AC model composition, SP7T provides automatic integrity and consistency check in-
ternally to exclude Error Type 5 (i.e., Inconsistent Assignment). It also performs the detection of
and Error Type 6 (i.e., AC Inheritance Loop) to prevent adding loop relations into the hierarchical
inheritance. As a result, Error Types 5 and 6 can be automatically excluded and it is worry-free for
a policy author by using SP7T. Meanwhile, SPT prevents duplicate rule composition in a policy
while SP7T will discard a duplicate rule when it is composed. In addition, SP7T checks the Error
Type 4 (i.e., Rule Conflict). Considering the following example for Nursing Service, Rule Conflict
occurs:

Subject : Role = Nursing Attendent; Resource : Patient Medicare = Dressing Care;
Action = Delete; Decision : Permit

Subject : Role = Nursing Attendent; Resource : Patient Medicare = Dressing Care;
Action = Delete; Decision : Deny

where these two rules are conflicts on the Decision (i.e., One for Permit and one for Deny).

Security Policy Tool X
Conflict of rule is found. Do you want to replace following existing rule
t Whcin” 20
with new rule

Subject : Role = Nursing Attendant; Resource : Patient Medicare = Dressing care; Action : Actions = Delete; Environment : Any; Condition : Any; Decision : Permit ?

I: Apply for all conflicted rule

No

Figure 57: Rule Conflict Detection

During the composition of the policy rule, SP7T will prompt the policy author to resolve the
conflict by choosing the desirable one. Figure |57 shows the example when a conflicting rule is
composed and SPT allows policy author to choose the correct one. Due to this, it is worry- free
for Rule Conflict error as SP7T automatically performs the detection.

Copyright (©InfoBeyond Technology, LLC Page 66

7) Summary (Z) Model Verification (=), Access Priilege Preview
Rules engaged with the

bute va

Attribute Attribute Value

Role = Nursing Attenaant Summary

Search e

Atribute Tice Attribute Key

Rule(s) engaged with selected attribute (Role = Nursing Attendant}: Search

Moge! Type Po o Algortt Policy Enforcement Algorthm ubject et Decision rheritance Relsvon |03
Nurs g Deny Biases Nu] ~
ABAC Nursin o " i Deny Biases Nursing Attendant actions = Read permit originates
ABAT I ur o | - cat | Dery Biases | rg Attergzst | P scare =Feeaing care | Acters=Ress | Permit | Origirates
ABAC I First Appiicati | Deny Bases NuTSIny = | W = = | =heas | Pern |
ABAC | " " | Deny Biases | Nursin £ | " =Oressingcare. | = T Permn

ABAC ng_s £ icabl Deny Biases sing Atendars ng car Permit

Dery Biasea

an: Riaca: 2ra-n

Security Requirements en
Security Requirement (s) engaged with selected attribute (Role = Nursing At . attri bU Search
Subject ource Actien

Actions = Read; Decision - Permit

Subject - Role = Nursing Amtendant; Resource . Patient Medicare = Bathing care; Action - Actions = Update; Decision . Permit Perm

Sutject : Role = Nursing Aftencant; Resource : Patient Megicare = Feeding ca ion - Actions = Read; Decision - PErmE. | Perm
Subject Roie rsing Attengart, Resource - Patient Medicare = Feeding care; Acti Decision - Permit Perm i
Subiacs Diuirine = hirtina Sanicar i Dassmmant = EmarsacciBanem i Baa.= bureina rra. Satiact Bacs | Duitise.= bursins Sac.car_Danimmant = Fmarsanc. - - Zarm

Beneficiary(s) and/or Inherited Value(s) engaged with selected attribute (Role = Nursing Attendant): ‘ Attribute b ficiari ‘
ripute benericiaries
\ |

Role:
Nursing Attendant

Role: Role
Head Nurse Chief of Hospital

Role:
Midwife

Figure 58: Summary of an Attribute Value

In addition to these automatic detections, SPT enables policy author to preview and check the AC
model from different ways. Figure[58|shows the information about attribute value of Nursing Attendent
that allows a policy author to check if there are unintended definitions of any attributes or not. For
example, from the table, a policy author can check if the rules are composed as the AC intention. If

there are any errors, the rules can be updated by right click on the rule in the project tree. As shown

in Figure[58] the summary shows up the inheritance beneficiaries of the attribute value and the pol-

icy author can check if there are any issues. A similar summary is provided for the composed
policies as well as rules such that the policy author can check the rule combining algorithm, policy
enforcement algorithm, and the rule decisions. Policy and rule updating function is provided for
policy author to revise a policy and its rules.

In order to find other types of AC flaws, SPT has "Model Verification” and ”Access Privilege
Preview” functions for various policy testing methods from which analysis can be conducted for
AC flaw detections as illustrated in the next Subsections.

Copyright (©InfoBeyond Technology, LLC Page 67

) Summary (%) Model Verficaton (), Access Prilege Preview
Poli

Verfication Separation of D

Choose Security ‘ ‘
Requirement
.~
5 Choase INgividual Security Requirement

Choose Policy

Choose Policy (Drag to reorder)

Choose a Verification
Methgd
Choose Vesfcation”™
ABAC : Nursing Attendant Policy o
: Verification Merged Polic: v
ABAC : Midwife Policy y A
\ eny-overrides v
=3

2

%_; @ Indidual Nursm‘g :\lte dant Policy test v @ @ ABAC : Midwife Policy v Enfog@é Algorithm ~ Deny Biased

g’;. 2z & P Run Verification

E s ™

R <
\
User Interfa\e %,\) oo o
g &
Methodology (1): Individual pr % A
ombinatorial Sequrity £ / \
. je3
Requirement \

Individual Security Requirement

\2

i

Policy analysis

Combinatorial Security Requirement

e .

Policy Verification - Merged } '
PB(cy Verification -Combined}—%}
| \

\

E’olicy 1: (ruleyy, ruley, ..., ruIeLAﬂ

Separation of Duty

[Policy 2: (ruleyy, ruleyy, ..., rulemﬂ

{

Separation of Duty - Merged

L])
Output
Separation of Duty - N {Policy n: (ruley, rule,,, .., rulen,@
e_ Combined
Security Requirement(s) AC Model with Policies
Testing Methods
Figure 59: Policy Verification

7.12.2 Testing Policy and Method Configuration

Requirements via a testing method, where

As illustrated in Figure [§] in Section [6.3] the policy verification is to test the AC effectiveness
(i.e., Permit or Deny) of the selected policies of an AC model in response to one or more Security

e Security Requirements are access requests,

e Policies are a set of access control rules with policy algorithms, and

o A testing method could be (1) Single Policy, (i1) Merged Policy, (iii) Combined Policy, which
state how the policies/rules are operated to achieve a AC decision. Merged Policy and Com-
bined Policy tests are used for the test of multiple policies.

discussed in Section

Figure [59 shows the Policy Verification interface and how it is functionally mapped to Policy Test
e “Policy Verification”: This provides the functions to conduct (I) — @ testing types, as

Methods in Figure[8] By clicking on “Model Verification”, it shows two functional tabs:

discussed in Section

e “Separation of Duty”: This provides the functions to conduct 3) — (©) testing types, as
Copyright ©InfoBeyond Technology, LLC

Page 68

For the Policy Verification, Figure [59 shows the Policy Verification interface which allows the
testing configuration of: (1): Choosing Security Requirement (Individual or Combinatorial), (2):
Choosing an AC Model with Policies, (3) Choosing Testing Methods (Merged, or Combined). As
shown in Figure [59] a “Run Verification” button will be activated if a testing request is ready by
choosing the Security Requirement, Policy, and a testing method.

Order the Policies: The order of the policies may play a role on the policy-combining algorithm.
For such a consideration, SP7T allows the selected policies to be reordered by a function called
Drag to reorder. This function allows you to choose a policy in the “Choose Policy (Drag to
Reorder)” window and drag it to a new sequenced place in the window.

In the following subsection, we explain how to conduct policy analysis with various testing meth-
ods.

%) Summary (2) Madel Verification (-} Access Privilage Preview Schema: Nursing Attendant Policy of Nursing Attendant

Policy Verification Separation of Duty Policy Tests is chosen Policy is chosen

Cirooss Individual Securily Requiremant = — Chocse B — Chovie Veiikostion
- e
® Individual - Nursing_Attendant_Policy Tests v @ (® | ABAC : Nursing_Attendant_Policy ~ @ (3) Sm_gle Policy
Verification method
(1): Choose Security (2): Choose a Policy &
Requirement Schema Schema (4): Verification
button to start to test

Policy Analyzing Zone: Testing
Results for AC flaw detection

Figure 60: Single Policy Verification

7.12.3 Single Policy Verification

If only one policy is chosen for verification, the merged policy verification and combine policy
verification are reduced to Single Policy Verification. Figure demonstrates a Single Policy
Verification example using the Nursing Service and shows three steps:

e Choose Security Requirement Schema(s): Navigate to Policy Verification by clicking
“Model Verification” and “Policy Verification” subsequently. Under the “Choose Security
Requirement”, a schema can be selected from the dropdown menu which lists all the com-
posed schemas, such as Nursing Attendant Policy Tests, as shown in Figure [00] The
selected schema is added into the “Choose Security Requirement” list upon the click of
Repeating this operation, multiple schemas can be selected. Meanwhile, ® can be used to
remove a selected schema from the “Choose Security Requirement” list.

e Choose a Policy: This step selects the policy for testing. Under the “Choose Policy (Drag
to Reorder)”, a policy in an AC Model can be selected from the dropdown menu which lists
all the composed policies, such as ABAC' : Nursing Attendant Policy Tests, as shown
in Figure [60] The selected policy is added into the “Choose Policy (Drag to Reorder)” list
upon the click of ©. @ allows to remove a selected policy from the “Choose Policy (Drag to
Reorder)” list. Single Policy Verification only chooses one policy.

Copyright ©InfoBeyond Technology, LLC Page 69

e Start to the Verification: As only one policy is chosen, Single Policy Verification is the
available option in the “Choose Verification” method. Please click the “Run Verification”
button to start the test. Upon the execution of the test, the verification results will be pre-

sented in the Policy Analyzing Zone and then policy analysis can be conducted as illustrated
below.

#8

L Single Policy Verification Results (First-applicable & Deny Biased))

= s

Single Policy Verification Result (First-applicable & Deny Bmscd]é

Search

A Security Requirement denoted by SR;
Resource R Decision

@ew

Search

. [l ’
Policy(s) and Match result against the sillctcn".sccl'qitv requirement:
] + .
v

2
®
b

Policy Name :_ Rule Combinaticn Algorithm Policy Enforcement Algorithm Combined Result

First-applicable Deny Biased

Requirement Schema Sutject Verification Result "';‘\
Nursing Attendant Policy test Reie = Nurse Attengant Patient Record = Medical Record Nursing Action = Create Deny TRUE z
Nursing Attendant Policy test Role = Nyrse Artengant Datiae Barnes g Seaccpipeion INursing Action = Resd I} permit | FALSE S
Tursing Attendant Policy test “Role = Nurse Attendant _[Patient Medicare = Dressing care 1 Nursing Action = Delete m " H §
Nursing Attendant Policy test |, _‘fﬁw O RIETaaTT l PR T BN }e TGrTng At = Devete | Permit] FALSE 5”
Nursing Attendant Pol E 1Role = Nurse Attensant Patient Medicare = Feesing cfe Nursing Action = Delete Permit FALSE =4
Nursing Attengant Policy test E l 1 Role = Nurse Attendant Patient Medicare = Tolieting care Nursing Action = Delete Parmit " FALSE =
Nursing Attendant Policy test H Hi = Nurse Attendant Patient Megicare = Catheter care Nursing Action = Delete Permit f;xsl 5

F
=
-~
]

ABAC : Nursing Amnaani Pun:i ‘.‘ |
— .
i VN FALSE is a combination of all the testing results of all
Rule(s) and Match result of Selected Policy against the seicted security requirement:

i rules using rule combination algorithms L)
Sequence No l'. subje R = : : =
2 «:-'f =Mi :‘.‘,. fe Permit | nherited N ‘f":\
30 Role § Nurss = Excise care Permnt nherited 28
n } atient Medicare = Excise care Permit | nherited of %
32 Patient Medicare = Safety care Permit : Originated of Applicable | f_ux';
33 | Patient Megicare = Safety care permit | nherites ot Applicable qg
34 | Role = Nyrse Head Patient Megicare = Safety care Permit nherited dt Applicable | ﬁ
35"- ‘ Role = Cn Qg7 Hospital) dicare = Safety care Permit . dt Applicable > %
} Roie = Nurse Attergant Pate care = Dressing care Dery Origingted. ._.-2=> Deny | -
| Role = Nurse Attendant Patient Medicare JBathing care Dery Originated of Applicable | %-
Role = Nurse Attengant Patient Medicare =|Feeding care Nursing Action = Delete Deny Originated ot Applicable 2
3% T Role = Nurse Attengant : dursing Action = Delete Deny Originated | g
) [Roie = Nurse Atengant A rule of the selected policy - Rule;, BRI rEl Dery Originatea F=
a ’ Role = Nurse Attengant e i zaa g Nursing Action = Delete Deny Originateg Z | %
42 [Role = Nurse Attengant Patient Medgicare = Safety care Nursing Action = Delete Den Originated Rar

Figure 61: Single Policy Test Result

Policy Analysis: Policy analysis is to verify if each of the testing results of the Security Require-
ment is matched with the AC expectation or not. The AC expectation is the trust of a Permit or
Deny decision that should be intentionally given to a specific Security Requirement without AC
errors. If the AC expectation not matched with Decision result, an AC error occurs and the policy
needs to be revised to avoid the error and meanwhile generate no new errors. Figure [61] shows an
example to illustrate the policy analysis. This example shows the following information:

Security Requirement Schema (e.g., Nursing Attendant Policy Tests): The schema is se-
lected in Figure It has 22 Security Requirements that are listed in Table of “Single Policy
Verification Result” in Figure [61] It is noted that they are also listed in the schema summary by
Clicking Nursing Attendant Policy Tests in the project tree. The Security Requirements are:

Subject : Role = Nursing Attendent; Resource : Patient Medicare = Dressing Care;

Actions = Delete; Decision : Permit (Marked in Figure Denote this rule by SR, for illus-
tration purpose.)

where ““- - - 7 represents other Security Requirements in the table (same in below).

Testing Policy (ABAC' : Nursing Attendant Policy): This is the testing policy selected in Fig-
ure This policy has a set of rules which are listed in the Table of “Rules and Match result of

Copyright (©InfoBeyond Technology, LLC Page 70

selected security requirement” in Figure Similarly, these rules are listed in the policy summary
by clicking Nursing Attendant Policy under ABAC in the project tree. These rules are:

Subject : Role = Nursing Attendent; Resource : Patient Medicare = Dressing Care;
Actions = Delete; Decision : Deny (Marked in Figure [61} Denote this rule by Rule; for illus-
tration purpose.)

Policy Algorithms: The policy algorithms are configured during the composition of the policy as
shown in Figure 32] The example has: (i) Rule Combination Algorithm - First Applicable, (ii)
Policy Enforcement Algorithm - Deny Biased.

Verification Results: The final verification results are presented by TRUE/FALSE. Policy
author reviews the verification result by following ACFD theory:

If the verification result of T RU E or FALSFE is matched to AC expectation, then we say: No AC' flow;
Otherwise, AC' flow

For example, the verification result for SR, is read as: It is FALSE to give Permission for
Nursing Attendant to Deletes the patient medicate record. This result is contradict to the SR,
that states: It is Permitted for Nursing Attendant to Deletes the patient medicate record. In
this example, it has:

{AC Flaw, if SR; is AC Expectation (10)

No AC Flaw, Otherwise.

Suppose S R; is the AC expectation. Under this assumption, the result is not matched with the AC
expectation. According to the AC flaw Error Type definition, this can be identified as Error Type
1 (Block Privilege, see subsection as the intended permission of the Nursing Attendant is
declined by the given policy. By reviewing the rules, it can be seen that Rule; in the policy declines
the request for Nursing Attendant to Delete the patient medicate record, and all other rules are
“Not Applicable” as shown in Figure Therefore, a modification should be made to Rule;,
such as revising the Deny to Permit such that SR; will be matched with the rule Decision. The
modification can be done by right clicking on the rule in the project tree with selection of “Update
ABAC Rule”.

The above analyzing procedure repeats for all Security Requirements. As each Security Re-
quirement is independently tested against the policy. The above example has 22 results, i.e., 22
TRUE/FALSEs, which are shown in the last column of the Table “Single Policy Verification
Results” in Figure and marked as List of Verification Result. Therefore, the policy author
needs to review all the 22 results to verify if they are matched to AC expectation. If a flaw is found,
the corresponding rule can be identified and modified to fix the flaw. After the revision, the policy
should be reverified by repeat policy test in Figure [60| and the above analysis in Figure [6]]till all
AC expectations are satisfied.

Exhaustive Single Policy Verification: Exhaustive Single Policy Verification is to test a policy

Copyright (©InfoBeyond Technology, LLC Page 71

with Combinatorial Security Requirements. The above example considers the schema named by
Nursing Attendant Policy Tests which is built in the category of the Individual Security Re-
quirement. As an result, the request cases are normally limited due to manual Individual Security
Requirement generation, e.g, 22 Security Requests. Differently, Exhaustive Single Policy Verifi-
cation verifies the AC requests to achieve a certain Degree of Coverage (See Subsection [/.11.3)
to offer a higher AC security confidence. It could verify the policy via a large number of Security
Requests. For the example in Subsection 4 — way Combinatorial Test Suite has gener-
ated 2907 Security Requirements. The analysis of the results of all these Security Requirements
achieves 27.83% Degree of Coverage. Such a coverage will reaches to a Flaw Detection Probabil-
ity of 90% — 100% proximately. Therefore, an affordable Exhaustive Single Policy Verification is
recommended for policy verification.

* Summary () Model Verfication () Access Privlege Preview

Policy Verfication Separation of Duty

Choose Individusl Secusity Requirement Choose Policies Choase Verification

BVt S0k LA TS . A] Verification Single Palicy 2
() | TestSuit:4-Way v @ () | ABAC: Midwie_Policy v ®

Figure 62: Policy Verification Steps

Figure [62] shows how to conduct Exhaustive Single Policy Verification. Instead of choosing a
schema of Individual Security Requirement, Exhaustive Single Policy Verification choose a Com-
binatorial Test Suite, such as 4 — way as shown in Figure[62] The operations are to first navigate
Policy Verification by clicking “Model Verification” and “Policy Verification”, choose a Combina-
torial Test Suite, e.g., 4 — way, from the dropdown menu of the““Choose Security Requirement”,
and then choose the policy as shown Figure[62] It is then to click on the Run Verification icon to
perform the test and analyze the verification results, e.g., 2907 results in the example, to fix the
policy flaw if it has. SPT provides search, sort, print, and Excel output functions to facilitate the
analyzing process as it could be time-consuming.

* Summary (©) Model Verification (), Access Prilege Preview (1): Choose one or

(2): Choose two or more policies (3): Choose Merged Policy
Policy Verification - Separation of Duty mo’re shemas
Choose Individusl Security Requirement L Choose Policies Crocse Verification
Iindmdual © Nursing_Altendant_Palicy_Tests ABAC : Nuvstg_ﬁ\ttndant_ﬂolmy et Merged Peiicy

Rule Combination Algerithm First Applicable

® Individual - Nursing_Attendant_Policy Tests v @ ® ABAC - Midwife_Policy v @ Enforcement Algorithm o Deny Biased v
—

_—
_—

(4): Choose Algorithms

Figure 63: Merged Policy Verification

7.12.4 Merged Policy Verification

Instead of a single policy, Merged Policy Verification verifies the AC effectiveness of multiple
policies while these policies are merged as one policy. In this way, the decision of an AC request,
i.e., a Security Request, is determined by all the rules of multiple policies. Consider an example of
two policies while each policy has a set of rules. In this case, a Security Requirement will be tested

Copyright (©InfoBeyond Technology, LLC Page 72

against each rule in other policies. The testing results of all these rules will be merged by a rule
combining algorithm and a policy enforcement algorithm. The merged Decision is compared with
the Decision in the Security Requirement to yield a T RU E or F ALSE. Please refer to Subsection
[6.3.2] for the detailed principle.

Policy Test: Figure 63| shows how the merged policy verification is conducted.

e Choose Security Requirement Schemac(s): Click “Model Verification” and “Policy Verifi-
cation” subsequently. Choose a schema from the dropdown menu and add it to the “Choose
Security Requirement” by clicking “©” button, e.g., Nursing Attendant Policy Tests, as
shown in Figure One or more schemas can be chosen for the test.

e Choose Two or More Policies: The purpose of Merged Policy Verification is to test the AC
effectiveness of the selected schema against all the rules of two or more policies. Therefore,
at least two or more policies (e.g., Policy 1 —n) are selected for Merged Policy Verification.
This is done by repeatedly choosing a policy from the dropdown menu and clicking “®”
button to add the policy into “Choose Policies”, as shown in Figure [63] Figure[63]shows two
policies that are ABAC' : Nursing Attendant Policy and ABAC' : Midwife Policy.

e Choose Merged Policy and Algorithms: As two policies are chosen, “Choose Verifica-
tion” will show up three dropdown menus for Verification, Rule Combining Algorithm, and
Enforcement Algorithm respectively. “Merged Policy” is chosen for Merged Policy Veri-
fication. Meanwhile, a Rule Combining Algorithm and an Enforcement Algorithm should
be chosen. During the policy composition, each policy is configured with its own Rule
Combining Algorithm and Enforcement Algorithm. These algorithms may be different for
policies, e.g., Policy 1 has First Applicable while Policy 2 has Deny Override. When
Merged Policy Verification is applied, these algorithms will become invalid as these al-
gorithms could be unified into the chosen algorithms. For example, First Applicable and
Deny Biased as shown in Figure |63| will be applied to the Merged Policy Verification for
ABAC : Nursing Attendant Policy and ABAC : Midwife Policy regardless of the
initial algorithm configurations of these two policies.

o Start to the Verification: Finally, it is to click the Run Verification icon and the test starts
immediately.

Copyright (©InfoBeyond Technology, LLC Page 73

‘ Merged Policy Verification Merging algorithm: First

Results Applicable & Deny biased
o8 Q Security Requirements of the selected schema) }iim
Merged Policy Verification Result (First Applicable & Deny Biased) - A Search B d
Requirement km-f Subjec oug ionResit [

Nurging_Attendant_Po

| synsay uoneayan Jo 15!1)
=

N | Rules of the selected policies\,\ = ctions = Upa
ired decurly requirement: A Search =&

Ja

)

“atent Med,

Patent Mes

Patient Medi e s a combination of all the testing results of all

Patent Mes;

rules using rule combination algorithms

Not Applicable
Not Agglicable
Not Applicable
_Not Agglicable

3|nJ yoea jsurede 3nsal unsal 4o s

|

Figure 64: Merged Policy Verification Results

Policy Analysis: The policy analysis of the Merged Policy Verification has a similar procedure of
the Single Policy Verification and the difference is that Merged Policy Verification involves two
policies. Specifically, after clicking the Run Verification icon, the testing results will show up and
Figure [64]is an example that includes the following information:

Security Requirement Schema (Nursing Attendant Policy Tests): As configured in Figure
Nursing Attendant Policy Tests is the selected schema that has 22 Security Requirements
that are listed in Table of “Merged Policy Verification Results” in Figure[64] The following Secu-
rity Requirement is highlighted in the table by blue and we use its result for AC analysis:

Subject : Role = Nursing Attendent; Resource : Patient Record = Prescription;
Actions = Read; Decision : Permit (Denote this rule by SR, for illustration purpose.)

Testing Policies: As shown in Figure [63] the Security Requirements in the selected schema
(e.g., Nursing Attendant Policy Tests) are tested against all rules of two selected policies:
ABAC : Nursing Attendant Policy and ABAC : Midwife Policy. The rule that is high-
lighted in Figure[64]is below:

Subject : Role = Nursing Attendent; Resource : Patient Record = Prescription;
Actions = Delete; Decision : Deny (Denote this rule by Rule; for illustration purpose.)

Policy Algorithms: As shown in Figure [63] the chosen policy algorithms are (i) Rule Combining
Algorithm - First Applicable, (i1) Policy Enforcement Algorithm - Deny Biased.

Verification Results: Policy author subsequently reviews the verification result (i.e., FALSE/TRUE)
of all Security Requirements in the schema. The verification result of S R; in the above example is
FALSE which is highlighted in Figure [64] As noted in Figure[64} the FALSE is the merged ver-
ification result of the Security Requirement S R, against all rules, and in other words the FALSE

Copyright (©InfoBeyond Technology, LLC Page 74

is a combination of all testing results of all rules using rule combination algorithm. According to
the verification principle:

AC Flaw, if SR, is AC Expectation

. (11)
No ACFlaw, Otherwise.

If the Nursing Attendant is Permitted to Read the patient’s Prescription as stated in SR is
the AC Expectation, there is an AC Flaw since the testing result is FALSE. According to the AC
flaw Error Type definition, this AC Flaw is Error Type 1 (Block Privilege, see subsection @ as
an intended permission of the Nursing Attendant is declined by the given policy. As shown in
the List of testing result against each rule in Figure [64] the SR, testing results against all the rules
are Not Applicable which means no rule governs the S R security requirement. In order to fix AC
flaw, a new rule needs to be added, such as:

Subject : Role = Nursing Attendent; Resource : Patient Record = Prescription;
Actions = Read; Decision : Deny
which satisfies the AC expectation.

on [N
Merged Policy Verification Result (First Applicatle & Deny Biased) : Search R
Requiremert Schems Subject Agtion Decision Verification Result -
Nursing_ATiendant_| | Roie = Nursing Attendant Pate - R TRUE
Nursng_Amengant_Polcy_Tests | Ao = Nursing Attengant | :) is not matched to TR
Nursng_Amend | Role = Nyrsing Attengant TRUE
4
Nursing_Attends ests Role = Nursing Attendant 1AL

Nursing_Attend Role = Nursing Attengant

Nursing_Attend ests Role = Nursing Attendant

m, Role = Nursing Amengant

sision = Nursing Sevices, Department = Emerg

Nursing

Role = Nursing Atte

Nutsing_Attendant_Policy_] / fole = Nursing Attendant | ‘Actions = Res Perm TS v
Rule{s) and Match result against the ,,Gecurity ReqUireme“tj‘ Search e
Deasion nrentance Peiztion - Match ﬁ:su; =
Deny | Originated Not Agplicatle A

Deny | Originatea ‘ ,M ..w..('..,.e_ |

Crigmatez Not Agplicable

Mo Appbicaile

fresmesd hurse | Fatert R " on | eate | Permit rherites Mot Applicable

koie =Crief of Rule causes AC leak [t Recora = Prescription rerted Mot Applicable

T T —— Modification is required to fix the AC leak pprm T Nk hgakia

| 1

 Role = ead Nurse | Patient Megicare = Dressing care) i . ' . ' hetes | Not Applicatle

Role it | Patiert Medicare = Dressing care | | Permit | _ Inhertes | Mot Agplicable

Patient Megicare = Dressing care sermit Drignated pE—

Role = Head Nurse Eatient Megicare = Dressing care sermit nherted Not Agplicatle

Role = Chief of Hospital Patient Megicare = Dressing care Permit inherited Not Agplicable

Role = Migwife Patient Medicare = Dressing care Permit Criginated Not Applicatle

WBAC Migwite_Policy Role = Head Nurse Patient Megicare = Cressing care Permi rhertes Not Agplicable
ABAC - Midwife_Poiicy | Roie = Ohvef of Hospita | Batient Megicare = Dressing care Permit | Ieherten Mot Agolicatle 1¥|

Figure 65: Example of Error Type 2 (Leak Privilege)

The above policy analysis should be conducted for all Security Requirements. Each security re-
quirement will generate a testing result (FFALSE/True) and the policy author verify if all the
results (i.e., each result in the “List of Verification Result” in Figure |6_2f[) are matched with the AC
Expectation. If any AC flaw, the policy author can review the testing results of each rule (i.e., each
result in the “List of testing result against each rule” in Figure [64)) and identify which rules cause
the AC flaw and correct them in a way to achieve the expected results. Figure[65]shows an example
of Error Type 2 (Leak Privilege) where the AC expectation is:

Copyright (©InfoBeyond Technology, LLC Page 75

Subject : Role = Nursing Attendent; Resource : Patient Record = Prescription;
Actions = Create; Decision : Deny

while the testing result is FFALSE, which causes a consequence that Nursing Attendent can
Create a Prescription, which is supposed the privilege of the Midwife and a Nursing Attendent
should not have the privilege to create a Prescription. In order to fix the AC leak, the policy author
clicks the corresponding rule that causes the leakage in the project tree and revises the permission
as the AC expectation. After the revision, a new Merged Policy Verification can be conducted to
confirmation the correction of the AC leak.

= Summary <) Model Verification _ Access Privilege Praview

Policy Verffication Separation of Duty

(1): Choose a combinatorial test suite

): Choose two or more policies for
merged policy test

‘ (3): Choose Merged Policy ‘

Choose Individusl Security Reguirement -

Choose Policies

_— Choose Verification

T / \
AC - N At Poli
N P Vekcton T
Rule Combination Algorithm First Applicable v O
Test Suit 4 - Way v @ (®) ABAC Midwife_Policy v @ Enkicoinent Akt [Dorm Biassd =

(4): Choose Algorithms ‘

Figure 66: Example of Exhaustive Merged Policy Verification

Exhaustive Merged Policy Verification: Exhaustive Merged Policy Verification is to test two or
more policies by merged verification with Combinatorial Security Requirements. Figure [66]shows
an example of 4 — way Combinatorial Security Requirements. Comparing to Individual Security
Requirement, the difference is that the Exhaustive Merged Policy Verification should choose a
Combinatorial Test Suite in Step 1 as shown in Figure [66] Other steps are the same as shown
in Figure [63] Meanwhile, the policy analysis and leakage correction are the same as the Merged
Policy Verification.

* Summary (=) Model Verification (=) Access Privilege Preview

Policy Verification Separation of Duty ‘ (3): Choose Combined Policy ‘

(1): Choose one or more schemas ‘ ‘ (2): Choose two or more policies
_— 1
Chosse individus! Security Requirement — Chosse Policies \‘
Indnidual : Mursing_Attendant_Policy Tests ABAC - Nursing_Attendant_Policy

ABAC - Midwife Policy Verification

Choese Verification
Combined Policy |

Palicy Combination Algorthm First Applicable v O

(4): Choose Policy
Combination Algorithm

® Indridual : Nursing_Attendant_Policy Tests ~ @ ® ABAC - Midwife_Policy v @

Figure 67: Merged Policy Verification Steps

7.12.5 Combined Policy Verification

Combined Policy Verification verifies the AC effectiveness of Security Requirements against mul-
tiple policies and the all the results are combined into a final Decision. Specifically, the final
Decision (Permit or Deny) of a Security Requirement is made by two steps: (i) the Security Re-
quirement is first against each rule with each policy and generates a Decision with the use of
the policy algorithm, (ii) the Decisions from the individual policies are combined into a Decision
through a policy combining algorithm. In the end, the combined Decision is compared with Deci-
sion in the Security Requirement for a judge of TRUE or FALSE. Please see Figure [10]| for the
process of the Merged Policy Verification.

Copyright (©InfoBeyond Technology, LLC Page 76

Policy Test: Figure |67 shows how the combined policy verification is conducted. The first two
steps are the same as the Merged Policy Verification.

e Choose Security Requirement Schemac(s): Click “Model Verification” and “Policy Verifi-
cation” subsequently. Choose a schema from the dropdown menu and add it to the “Choose
Security Requirement” by clicking & button, e.g., Nursing Attendant Policy Tests, as
shown in Figure One or more schemas can be chosen for the test.

e Choose Two or More Policies: Combined Policy Verification should choose with two or
more policies (e.g., Policy 1 — n). This is done by repeatedly choosing a policy from the
dropdown menu and clicking @ button to add the policy into “Choose Policies”, as shown in
Figure [63| Figure [63|shows two policies that are ABAC' : Nursing Attendant Policy and
ABAC : Midwife Policy.

e Choose Combined Policy and Algorithms: Upon the selection of two policies, “Com-
bined Policy” can be chosen from “Choose Verification” and it shows up “Policy Combined
Algorithm”, as shown in Figure From the dropdown menu under “Policy Combined
Algorithm”, an algorithm, e.g., First Applicable, can be chosen, which will be applied to
combine the Decisions from each policy.

e Start to the Verification: Finally, it is to click the Run Verification icon and the test starts

= Summary (2 Model Verfication (), Access Privilege Preview
Policy Verification Separation of Duty
Cnocse Inamicusl Secunty Requrement Cnocse Folicies Cnocse venticanon
Individual - N Palicy_Ti ABAC ' Ni Attendant_Poll
Individual © Nursing_Attendant Policy_Tests B/ Mp°|y ant_Policy VedBcation Combined Policy
©
Policy Combination Algorithm First Applicable
® Individual - Mursing_Attendant_Policy Tests ~ @ ® ABAC - Midwife_Policy ®
[ES I =5

Cominea Policy Verification Result (First Applicable) : e
ioi 3
cle TRUE A

Division = Nursing Services, Depantrm m, Role = Nursing Attengant ALSE

TRUE

TRUE

TRUE

TRUE

FALSE

TRUE
TRUE v

Figure 68: Merged Policy Verification Results

Policy Analysis: Policy analysis of the combined policy verification allows us to: (1) detect the AC
flaw, (ii) identify the source of the AC flaw. The sources of a AC flaw could be a rule, the policy,
and policy algorithms, or the combination algorithm. Therefore, our policy testing and analysis
should have display their correlation clearly. After clicking the Run Verification icon, the testing
results will show up. Figure [64{is an example of the following information:

Combined Testing Results: Figure [64] has a table named as “Combined Policy Verification Re-
sult” which lists a sequence of Security Requirement and the testing results (ITRUE/FALSE).
As configured in Figure[67, Nursing Attendant Policy Tests is the selected schema with a set of
Security Requirement. The following Security Requirement is highlighted in the table by yellow

Copyright (©InfoBeyond Technology, LLC Page 77

and we use its result for AC analysis:

Subject : Division = Nursing Service &Department = Emergency Room
& Role = Nursing Attendent;

Resource : Patient Record = Prescription;

Actions = Create;

Decision : Permat (Denote this rule by S R; for illustration purpose.)
Verification Result = FALSE

which says that S R; is not Permitted, e.g., it is False for S R; to be Permit.

The combined testing results allow policy author to determine if the it is correct or an AC flaw with
the following principle:

AC' Flaw, if SR, is AC Expectation & Result = TRUFE
AC Flaw, if SR, isn’t AC Expectation & Result = FALSE (12)
No ACFlaw, Otherwise.

By following the above principle, the policy author can review all the Security Requirements with
identification of the AC flaw. Suppose there is an AC flow. Clicking on the Security Requirement
in the table of “Combined Policy Verification Result” will lead to “Policy (s) and Match result
against the selected security requirement” table, which is shown in Figure [69]

%) Summary () Model Verification (), Access Privlege Preview
Policy Verification Separation of Duty

Choose Individusl Security Requirement Choose Policies Choose Verificstion

individual - Nursing_ Attendant Policy Tests ABAC - Nursing_Attendant_Policy) :
ABAC : Midwife Policy Verification Combined Policy
Poliey © Algorithm | First App = O
(® | Individual - Nursing_Attendant_Policy_Tests ~ @® ® ABAC : Midwife_Policy v @
F=Rr %

Combined Policy Verification Result {First Applicable) :
Permit such that the Verification Result is FALSE
Permit” % FALSE
Frme | TRUE
1Deny T
foer ' raue
; Den TRUE

(3) The Combined result of Deny is not matched to Med
®
~

m, Role = Nursing Attendant
Ao ')

7 T
/ Decision of each policy is .-¢ =
shown up after click on 7+ #uenaart

i the Security Requirement " TRUE

TRUE

(2) Combined result: Deny S
Der "-‘ TRUE

. oo . M =
(1) Individual Policy Result

Policy(s) and Match result against the selcted security requirement:

ey Name

()ﬂIIl.(

K Deny \
. Deny !

Figure 69: Identify the Policy and the Individual Testing Results

Individual Policy Testing Result: Figure [69] gives a list of the policies and the individual policy
testing results. Figure[69 has two policies that are selected for Combined Policy test, i.e., ABAC :
Nursing Attendant Policy and ABAC' : Midwife Policy. Both of the policies give an result
of Deny. These two individual testing results applies the Policy Combining Algorithm, e.g., First
Applicable. It will yield a Deny as the final result, which again is contradict with Permit stated
in the SRy Decision. The Combined result of Deny is not matched to the Permit such that the
Verification Result is FALSE.

Copyright (©InfoBeyond Technology, LLC Page 78

= Summary (5) Model Verfication (), Access Privilege Preview
Policy Venfication Separation of Duty
Choose Individusl Secunty Requirement Cheose Policies CThoose Verification
Indmdual - Nursing Attendant_Policy_Tests ABAC - Nursing_Attendant_Policy
¢ - Midwife_Policy Verfication Combined Pohcy
Policy Combination Algorithm First Applicable ~ O
® Indmvidual - Nursing_Attendant_Policy_Tests + @& ® ABAC - Midwife_Policy v @
om]
S — (4) Thg Combined result of PerTy is not mgtched to e =
Permit such that the Verification Result is FALSE
L]
~oo
ek % - ~
om. Role = Nursing Amensant 9 FALSE
TRUE
aisE
TRUE
TRUE
TRUE
~ * (3) Combined result: Deny < i
" | . > TRUE
e . amengant Paviert ecor | AC e Deny ‘-‘ TRUE v|
Click on the policy to show all : : v
. ement- V —— M - -]
the rule and matching result ™Y reaurement: Lo) .
) . g = = (2) Individual Policy Result =
with the Security Requirement - S A— i
_ t appiieat y Biases A
o ABAC - Nursing_Attengant_Pohicy 1 First Agplicatie. | Ceny Biasen v
& Ge®
Decs o . . Matst Bgsy "
(1) Individual Policy Result is the g bk T
Perm . . . S
_-— consideration of all the rule matching results I.“"‘ — . ~
ern
with a rule combination algorithm and ey
Perny N i/ Not Applicable
Perr) enforcement algorithm T tt Aneatie |
: i
Pern V'S :‘ Not Apglicable !
Permit rreritea N\ NotApplicasle |
H
Permi Oniginated S % Net Apglicable A
T
Permit rherited ~~.\, Not Applicable /'
! - 1 N
v rhertes Rog Apsicaie” v

Figure 70: Identify the Rules and the Matching Results

Rule against Security Requirement: Clicking on the policy (i.e., ABAC : Nursing Attendant Policy)
in the “Policy (s) and Match result against the selected security requirement” table, a new table of

“Rule (s) and Match result of the Selected Policy against the selected Security Requirement” is

pop out as shown in Figure This table tells how the Individual Policy Result (e.g., Deny) is

tested out. The Individual Policy Result is the Security Requirement tests again each policy rule

with rule combining algorithm and policy enforcement algorithm.

Reversely reviewing the above correlations, we can summarize how the Verification Result is
specifically derived:

Test against each rule

Security Requirement > Matched Result

Rule combining algorithm and policy enforcement algorithm
Matched Result

> Individual Policy Result

Policy Combination Algorithm

Individual Policy Result >C'ombined Result

. Is the Combined Result matched with the S R Decision
Combined Result 2

>VerificationResult(TRUEor FALSE)

Copyright ©InfoBeyond Technology, LLC Page 79

=! Summary (©) Model Verfication), Access Privilage Praview

Policy Verfication Separation of Duty

Choase Indivigusl Security Requirement Chocse Policies Chaose Verification

Indmdual - Nursing_Attendant_Policy Tests ABAC - Mursing_Attendant_Policy
) B - T = Verificat Combined Pol v
ABAC - Midwife_Policy — ombined Policy

Policy Cambination Algorithm First Applicable v O

@ | Individual - Nursing_Attendam_Policy_Tests ~ @ (® ABAC : Midwife_Policy v @

#4

Combined Policy Verification Result (First Applicable)

Decision

Permit TRUE ~
Permit | TRUE
Permit TRUE
et | Matched .
rm o By e TRUE
Permit 2 True

S\ permn

A Peww TRUE
Combinéd result: s
Permit)
/? Individual Policy Result

a

Deny Bias: Deny
Deny Biased Permit

R

1 Search [«
," Matched result

€

ABAC - Nu Attendant_Policy

Rule{s) and Match result of Selected Policy against the seicted security requirement.

> a dh

Not Applicatle
Not Applicable
Not Applicable
Not Applicable
% Mot Applicable

§ care

Patient Mecicare = Feecing care nrertes [y
Patient Megicare = Feeding care Permit Originates v Permit
Parmit nhertes | Not Applicable

Permt nherted Not Applicatle

Figure 71: Example of Combined Policy Test
The above derivation can be illustrated with the example in Figure [71}

Security Requirement:

Subject : Role = Nursing Attendent; Resource : Patient Record = Prescription; Actions =
Create; Decision : Permit (Denote this rule by S R3 for illustration purpose.)

Matched Result: Permit (Highlighted in Figure and some results of Not Applicable
Individual Policy Results: Permit for policy ABAC : Nursing Attendant Policy and Deny for
policy ABAC : Midwife Policy

Combined Result: Permit (First Applicable from the first policy ABAC' : Nursing Attendant Policy
yields Permit.

Verification Result = TRUE

Applying the logic in Express [12] says that: If the Permit of the combined result for SR3 is AC
expectation, then it has no flaw according to S R3 Security Requirement. Otherwise, it is an error
and the highlighted rule or the rule or policy algorithms can be modified to fix the error.

The above policy analysis should be conducted for all Security Requirements. As SRj, each
security requirement will generate a testing result (F*ALSE/True) and the above analysis can be
employed to check if the verification result is matched with the AC Expectation or not. If any AC
flaw, the policy author can review the verification process of the rule and identify which rules or
algorithms cause the AC flaw and correct them in a way to achieve the expected results.

Copyright (©InfoBeyond Technology, LLC Page 80

= Summary () Model Verification (2] Access Privl

(1): Choose a combinatorial test suite ‘
Policy Venfication Separation of Duty

(2): Choose two or more policies ‘ ‘ (3): Choose Combined policy
for combined policy test \

Crocss Ingividusl Security Requirem Choose Palicier _— Chasse Vanficat
-

ABAC : Nursing_Attendant_Policy
ABAC - Midwife_Policy

Policy Combination Algonthm First Applicable W 7 O
///
® || TestSuit:4-Way vi @ ® | ABAC: Midwife_Policy v @ _— (5) Click to start
‘ (4): Policy Combine Algorithm

Venfication Combined Policy |

Figure 72: Example of Exhaustive Combined Policy Verification

Exhaustive Combined Policy Verification: Exhaustive Combined Policy Verification is to test
two or more policies by combined verification with Combinatorial Security Requirements. Figure
shows an example of 4 — way Combinatorial Security Requirements. Comparing to Individual
Security Requirement, the difference is that the Exhaustive Combined Policy Verification should
choose a Combinatorial Test Suite in Step 1 as shown in Figure[72] Step 2 selects the policies, Step
3 chooses the “Combined Policy”, and Step 4 is the selection of Policy Combination Algorithm.
Finally click the Run Verification icon to start the test. Similar results as shown in Figure [71| will
pop up. Meanwhile, the policy analysis and leakage correction are the same as the individual
Combined Policy Verification.

7.12.6 Separation of Duty

Separation of Duty test provides a way to avoid Conflicts of Interest associated with conflicting
roles. Before conducting a Separation of Duty policy test, Separation of Duty Security Require-
ments should be generated as illustrated in Subsection A Separation of Duty schema rep-
resents a case of Conflict of Interest, 1.e., an AC concern if the Decision of a Security Requirement
is conflicted with the Decision of another Security Requirement.

(1): Choose one or more Separation of
Duty Security Requirements

%] Summary () Model Verffication (=) Access Privilege Preview

Policy Verification Separation of Duty

(2): Choose a Policy ‘

e Cromss Pubcien \

\

Choose SOD Securty Requirement

(3): Click the Verification
button to start

soD:soD1 v @ X ABAC - Nursing_Attendant_Policy ~ @

A SOD (Separation of Duty Schema)

Verification Method

Figure 73: Starting Interface for Separation of Duty Policy Tests

Policy Tests: A Separation of Duty policy test tarts by clicking “Model Verification” and then
“Separation of Duty”. Figure [/3|shows the starting user interface of the Separation of Duty policy
test. At first, one or more schemas of SoD (Separation of Duty) Security Requirements should be
chosen from the dropdown menu. As such a test is dedicated to Separation of Duty policy tests,
all the schemas for Individual Separation Requirements and Combinatorial Security Requirement
are not contained in the dropdown menu. After the schema selection of Separation of Duty, one
or more policies should be chosen. Separation of Duty policy tests can be conducted by (i) single
policy, (ii) merged policy, and (iii) combined policy, depending on the chosen verification method.
The composition of these tests are described below. It is noted that the merged policy and combined

Copyright (©InfoBeyond Technology, LLC Page 81

policy tests are unified to single policy test as the merge and combination of one policy is the same
original policy.

= Summary (=) Model Verification Access Privilege Preview
L . One Policy is selected — single policy

Policy Verification Separation of Duty

Chosse SO0 Security Reguirement Chosse Palicies 5 Chosse Verificstion

SOD : SOD 1 ABAC : Nursing Attendant Policy il

A
Single Policy w

® S0D:SOD1 v @ @ ABAC - Midwife_Policy v @

Figure 74: Separation of Duty - Single Policy

Single Policy: This is case that the Security Requirements of a Separation of Duty schema is tested
against one chosen policy. It verifies if any Conflict of Interests are caused by the selected policy.
Figure[74]shows an example that SOD 1 is tested against the policy of Nursing Attendant Policy.
You click on the Run Verification icon to start the test.

= Summary () Model Verfication (-] Access Privilage Preview (

J (Merged Policy is J

Two policies are selected
chos:en

Policy Verification Separation of Duty

Chosse SO0 Security Requirement Chaose Policies Choase Verification

A
SOD : SOD 1 ABAC - Nursing_Attendant_Palicy > i

Venficat Pal
ABAC - Midwife_Policy enfication Merged Policy
Rule Combination Algorithm First Applicable v O

® soD.soD1 v @ @ || ABAC : Midwife_Policy & Enforcement Algarithm Deny Biased v

Figure 75: Separation of Duty - Merged Policy

Merged Policy: The Security Requirements of the Separation of Duty can be verified against
two or more policies. This involves a Merged Policy or Combined Policy test. Once two or
policies are chosen, “Choose Verification” will show up three dropdown menus for Verification,
Rule Combining Algorithm, and Enforcement Algorithm respectively. “Merged Policy” is chosen
for Merged Policy Verification. In this case, the Separation of Duty is evaluated over the merged
policy which verifies Conflict of Interest by merging all policies as one. Figure [75| shows two
selected policies (i) ABAC : Nursing Attendant Policy and (ii)) ABAC : Midwife Policy.
It considers all the rules of all policies and then applies the chosen rule combining algorithm and
enforcement algorithm, e.g., First Applicable and Deny Biased as shown in Figure [75] In the end,
clicking on the Run Verification icon starts the test.

= Summary (5) Model Verification (5], Access Privilage Preview (Combined Policy is J

Two policies are selected] (
ch054e_n

Policy Verification Separation of Duty

Choose SOD Secwsity Requirement Choose Folicies Choose Vesificstion
ABAC - K A Pok |
S 1 lursing_Attendant_Poficy ’
L 2 Poli v
ABAC - Midwie_Policy Verification Combined Policy
Policy Combination Algorithm FlrstAppur.abte o @

® |//sop-son1 v @ ® | |ABAC Midwife_Policy v ®

Figure 76: Separation of Duty - Combined Policy

Combined Policy: In addition to Merged Policy, “Combined Policy” can be chosen for Combined
Policy Verification, as shown in Figure[75] When Combined Policy Verification is applied, each Se-

Copyright (©InfoBeyond Technology, LLC Page 82

curity Requirement will be individually verified with each policy with the use of its own Rule Com-
bining Algorithm and Enforcement Algorithm (see Figure [I0). The Rule Combining Algorithm
and Enforcement Algorithms for two different policies (e.g., ABAC : Nursing Attendant Policy
and ABAC : Midwife Policy) are separately configured when these policies are composed, and
thus they could be different. Then, a Policy Combination Algorithm will be utilized to integrate
the verification results of all the policies, e.g., First Applicable as shown in Figure In the end,
clicking on the Run Verification icon starts the test.

= #1 (2) Verification result for each — '@j

Security Requirement

Overall Result . Sgarch

R E T T . T L

(1): SOD 1 Overall
Verification Result: All
can be granted

(a): Click SOD Schema

Figure 77: Separation of Duty Verification Result

Policy Analysis: The policy analysis of the Separation of Duty policy test is to identify if there are
Conflict of Interests hidden in one ore more policies. The Conflict of Interests, i.e., Error Type 8
(Separation of Duty Error), is indicated by the Separation of Duty overall results:

Yes if SR; and SR;’s verification results are conflict, ¢ # j

) (13)
No Otherwise.

Conflict of Interest = {

where SR; and S IR; represent two different Security Requirements in a Separation of Duty Schema.

Equation [I3] means that an error occurs if the SR;’s verification result is conflicted with that of
SR;. We use an example in Figure[75|to illustrate the above principle. Figure [77|shows an “Over-
all Result” table that lists the overall verification results of each Separation of Duty, e.g., SOD 1.
As shown in Figure 75} the overall verification result is:

All can be granted,

which indicates a Conflict of Interest if only one can be granted due to conflict. All can be granted
says that all Security Requirements are 7'RU E. It indicates

Copyright (©InfoBeyond Technology, LLC Page 83

Conflict of Interest = Yes,

if the Conflict of Interest is defined that these two Security Requirements cannot be permitted
together, such as two actions (e.g., create and approve an invoice) cannot be taken by the same per-
son. Clicking “SOD:SOD 1” in the “Overall Result” table, it shows a table of “SOD Merged Policy
Verification Result (First Applicable & Deny Biased”, which lists two Security Requirements that
are configured in Figure

Subject : Role = Nursing Attendent; Resource : Patient Medicate = Dressing care;
Actions = Delete; Decision : Permit (Denote this rule by SR, for illustration purpose.)
Subject : Role = Nursing Attendent; Resource : Patient Medicate = Dressing care;
Actions = Create; Decision : Permit (Denote this rule by SR, for illustration purpose.) where
the verifications of these two Security Requirements are T'RU F, e.g., permissions are given to two
actions together.

More specifically, Conflict of Interest appears if a Nursing Attendent cannot take Create and
Delete actions in the Nursing Service practice, due to discipline and liability for malpractice,
breach of fiduciary duty, or any other reasons. In other words, SR; and SRy cannot be TRUFE
together. However, no Conflict of Interest if it is allowable for Nursing Attendent to take both
Create and Delete actions. Therefore, the determination of Separation of Duty error relies on
the actual AC practice to evaluate if two or more verification results are conflict or not. A similar
example can be given as below:

Subject : Loan Manager; Resource : Client = Credit;

Actions = Update; Decision : Permit (Verification results= T RUF)

Subject : Loan Manager; Resource : Client = Mortgage;

Actions = Approve; Decision : Permit (Verification results= TRUE.)

where Conflict of Interest is stated by a loan manager cannot change a client’s credit score and
meanwhile play an impact on the mortgage approvement. This is because increasing the credit
may low the mortgage rate and the load manager can abuse it to benefit himself/herself and the
client while infringing the bank’s benefit.

Copyright ©InfoBeyond Technology, LLC Page 84

e L SO (2) Verification result for each = E
------ Security Requirement

Overall Result Search

(1): SOD 1 Overall
Verification Result: All

can be granted Not Applicabhe | A

Not Annn:amé_‘ c)
Not Applicable L3
\Np: Applicable '|‘
Na‘uzgnmme 1
Not Applicable |
| Net Annm:;h*‘e E
=4
| | Not Applicable’, Hi
Permit | s | Mot Applicable ‘5‘
{ [| | | Mot Applicable '.‘_‘.‘
] 4B [o urs Pa goore | =Reas Perm |] | Mot Appncame’.' |5
B f T P & Permit | < Mot Anpll:abie'.'
¢ Not Applicabld | |
Not Apnlu:abf’e ,"
Not Appllriée A

..........

(b)/

(a): Click SOD Schema

(b): Click on the Security
Requirement

(c): Identify the rule with a
Permit result that result in TRUE.
(d): Revise rule if necessary

| | Permit :,'
e | (g) ‘eiAspirenie. ..~
| = (d) e

dor Aiplicable
_ Nt Applicable
A "'T Not Applicable |
| Net Agplicable
Not Applicable

~ | ot Acalicadte | ¥

Figure 78: Separation of Duty Error and Correction

Separation of Duty Policy Correction: When a Separation of Duty error is identified by following
the principle of Conflict of Interest, the policy author can further analyze the policy rules and
revise them. Figure [/8| shows that the verification results are presented in three tables, namely (i)
“Overall Result”, (i1) “SOD 7 Merged Policy Verification Result”, and (iii) “Result (s) and Matched
result against the selected security requirement”. The policy analysis and error corrections has the
following steps:

e Separation of Duty Error Detection: Clicking the Separation of Duty schema, e.g., “SOD:
SOD i, i =1,---,”, Step (a) as shown in Figure[78] a table titled “SOD i Merged Policy Ver-
ification Result” appears. It then applies the principle in Equation [13] with the consideration
of the Security Requirements and their verification results (T’ RU E/F ALSFE) to identify if
any Separation of Duty error. If no error, reviewing the next SOD schema till all schemas
are reviewed and no errors are found.

e Policy Correction: If an “SOD 7 is found with Separation of Duty Error, it needs to identify
the rule (s) that cause the error. The corresponding operations are Step b, ¢, andd as shown
in Figure Step b clicks on the Security Requirement (e.g., S R») that has a conflict result,
e.g., SRy, with TRUE that is highlighted by blue in Figure A table of “Result (s) and
Matched result against the selected security requirement” appears and this table presents all
the verification results (Permit, Deny, or Not Applicable). Step c reviews the rules and the
verification results against the Security Requirement. The rules that give TTRU E or FALSE
can be identified and their impacts on the results can be checked. As shown in Figure[78] the
rule that yields a Permit (highlighted by green) causes a T'RU E (Highlight by green) as the
S Ry’s verification result.

e Separation of Duty Resolve: Finally, the rule yielding the Conflict of Interest can be revised
to resolve the Separation of Duty error. Similarly, it would be a solution to revise the rule
associated with S RRy’s result to solve the conflict.

Copyright (©InfoBeyond Technology, LLC Page 85

It is noted it has no exhaustive tests for Separation of Duty. This is because Combinatorial Security
Requirements are not Separation of Duty schemas. The definition of a Separation of Duty Security
Requirement schema is nontrivial. The policy author needs to identify the Separation of Duty
cases based on the practice of the access control system, properly define the schemas of multiple
Security Requirements, and finally test them.

7.12.7 Subject Access Privilege Preview

Access privilege preview is to check the privilege of subjects or resources that satisfy certain at-
tribute values. It includes (i) Subject Privilege Preview and (ii) Resource Privilege Preview. Please
refer to Subsection [6.3.6|for the principle.

. o i P I L , P
Summary () Model Verification ‘-4 Access Privlege Preview_ (1): Access Privilege Preview ‘ (5): Choose a Verification Method

Subject Access Resource Access
|
(2): Subject
Access

~

Choose Subject Amibute Checse Pelicies

‘ (3): Choose Subject Attributes ‘ (4): Choose Policies ‘ e
irst Applicable

_— g Combination Algorithm =
SR il Select All v @ L i TERerTs seny Biased
(6): Click to start

Figure 79: Subject Access Privilege Preview

Subject Privilege Preview is to preview the resource accessibility of given subject with certain
attribute values, e.g., previewing the list of data resources that an employee can access, which
provides a way for a policy author to verify if the intended AC security goals are achieved. Figure
[79] shows the steps to generate a Subject Access Privilege Preview: (1) Click on “Access Privilege
Preview”, (2) Click on the “Subject Access”, (3) Choose a set of Subject Attributes from the
dropdown menu under “Choose Subject Attribute”, (4) Choose a set of policies from the dropdown
menu under “Choose Policy (Drag to reorder)” box, (5) Choose a verification method, (6) Click
the Vellication button to start a query.

* Summary (©) Model Verfication (=, Access Privilege Preview

Subject Access Resource Access

Choose Subject Atibute Choose Policies Choose Verification

- — Veriication Single Policy v
\\\\ "
~___ O
= Single policy is
® Bole S Haniig naiont e (® ABAC Nursing_Attendant Policy ~ @ e asen
Table 1: Access Privilege of Rule = Nursing
w Attendant J - = s %
- List of the Access Privilege "
Access Privilege by Single Policy Verification (First Applicable & Deny Biased) : Role = Nursing Attendant _ . [
—
Resou = X\ Assess Privieg]
rtering ¢ . a

T oew
— Perme

MLSDefauttA v entering time = 17

Permit

Write access by Nursing Attendant to | ferme
Prescription is Deny 2l

Table 2: Policy, Rule Combining Algorithm and
Policy Enforcement Algorithm to achieve the
Access Privilege of the request

e
The policy for the
result

,,,,,

a
o a d

Figure 80: Subject Access Privilege Preview by Single Policy

Copyright (©InfoBeyond Technology, LLC Page 86

Single Policy: Figure[80|shows the configuration of Subject Privilege Preview from a single policy.
As shown in Figure subject attribute value of Role = Nursing Attendant is given. This is
query what the Resource that Role = Nursing Attendant can access with what actions. As only
one policy is chosen for the query, the verification method is “Single Policy”, as shown in Figure
[0 After clicking on the Run Verification icon, the access privilege results are demonstrated that
match the query. Particularly, the access privilege query is an verification process and the results
are shown in two tables:

e Access Privilege by Single Policy Verification: This table shows all possible accessing
requests of the given subject (e.g., Role = Nursing Attendant) and the results of access
privilege (Deny or Permit). The example highlighted in Figure[80|can be read as an Write —
Action access by Nursing Attendant — Subject to Prescription — Resource is Deny —
Privilige.

e Policy (s) and Matching result against the selected security requirement: This table
shows the select policy configuration including the Policy Name, Rule Combining Algo-
rithm, and Policy Enforcement algorithm.

Subject Privilege Preview answers the question the access privilege of a subject, e.g. a role, and
from which the policy author can check if any AC flaws. The Subject Privilege Preview results can
be exported as Excel table, enlarged view, and printout.

= Summary () Model Verification Access Privilege Preview

Subject Access Resource Access

Merged Policy

Choose Subject Attibute Chocse Folicias

Role = Nursing Altendant

Table 1: Access Privilege of Rule = Nursing | @
Attendant

f = T
“ ‘ List of the Access Privilege | = | (&}
car m =

SN

ABAC : Nursing_Attendant_Policy ~\

[ABAC - Midwife_Policy Venfication Merged Policy

~ —

P "
Two policies are | Rule Combination Algorithm First Applicable v {J
chosen

ABAG : Midwife_Policy v ® Enforcement Algoithm ~ Deny Biased

Access Privilege by Merged Policy Verification (First Applicable & Deny Biased) : Role = Nursing Attendant

£

> a

At .

enterng T

‘ Table 2: Policy, Rule Combining Algorithm and
Policy Enforcement Algorithm to achieve the

The policy '
for the result |7

Access Privilege of the request

“m e

Policy(s) and Match res:

Rule Combination Argorithm

o al de |<¢

Figure 81: Subject Access Privilege Preview by Merged Policy

Merged Policy: Figure [81|shows the configuration and results of Subject Privilege Preview with

merged policy. Similar to Figure[80} it considers one subject attribute value, i.e., Role = Nursing Attendant,
and query what the Resource that Role = Nursing Attendant) can access with what actions. Dif-

ferently, two policies are chosen and these two policies are merged as one by “Merged Policy”, as

shown in Figure 81} The merged policy is configured with rule combination algorithm and pol-

icy enforcement algorithm, i.e., First Applicable and Deny Biased respectively. After clicking

on the Run Verification icon, the access privilege results are demonstrated that match the query.
Particularly, the results are shown in two tables:

Copyright (©InfoBeyond Technology, LLC Page 87

e Access Privilege by Merged Policy Verification: This table shows all possible accessing
requests of the given subject (e.g., Role = Nursing Attendant) and the results of access
privilege (Deny or Permit) against all rules of two policies. The highlighted line in Figure
can be read as an request of Nursing Attendant — Subject for Create — Action to
Prescription — Resource is Permit — AccessPrivilige. If such a Decision is not the
intended one, the policy author can revise the rule in order to achieve an expected result,
e.g., Deny. The policy author can review all the results to check if they satisfy the AC
security requirement.

e Policy (s) and Matching result against the selected security requirement: This table
shows the select policy configuration including the Policy Names, Rule Combining Algo-
rithm, and Policy Enforcement algorithm.

The policy author can review all the results to check if they satisfy all the AC security requirements.

) Summary (*) Model Verification (= Access Privilege Preview

Subject Access Resource Access Combined Policy
Choose Subject Altibite Choose Policies F— v;‘m\\
. ABAC - Nursing_Attendant_Policy
e e s CombinedPocy
~ Policy Combination Algorithm ' First Applicable ~ O
® | Role = Nursing Attendant v ® . \\\\\: =
= g ® |ABAC - Midwife_Policy @[Two policies are
Table 1: Access Privilege of Rule = Nursing chosen
—‘ Attendant I I W T
e _ ‘ List of the Access Privilege ‘ L= |ep E

Access Privilege by Combined Policy Verification (First Role = Nursing Swarch e
=
~

-

======

......

} Deny

Table 2: Policy, Rule Combining Algorithm and . 1 _ .
‘ . v, R & e R .| The result of each policy
Policy Enforcement Algorithm to achieve the . i ey v
- and the combined result
Policy(s) and Match result against the selcted security requirement Access Privilege of the request — . W
>

Ry ~ . @
484 o

Figure 82: Subject Access Privilege Preview by Combined Policy

Combined Policy: Figure 82| shows the configuration of Subject Privilege Preview by combined
policy. Different than merged policy, combined policy tests the query against each policy and
the results are combined by policy combining algorithm. Figure [80] shows the same query as in
Figure 1] with a subject attribute values of Role = Nursing Attendant: what the Resource that
Role = Nursing Attendant) can access with what actions.The verification method is “Combined
Policy” as shown in Figure [80] After clicking on the Run Verification icon, the access privilege
results are shown in two tables:

e Access Privilege by Single Policy Verification: It shows all possible accessing requests for
Role = Nursing Attendant with access privilege (Deny or Permit). The highlighted line in
Figure[81|can be read as an request of Nursing Attendant — Subject for Create — Action
to Prescription — Resource is Permit — AccessPrivilige.

e Policy (s) and Matching result against the selected security requirement: This table
shows two policies, including the Policy Name, Rule Combining Algorithm, and the Policy

Copyright (©InfoBeyond Technology, LLC Page 88

Enforcement algorithm. Meanwhile, it shows the verification results of these two policies,
and both results are Deny. The Deny result in the table of “Access Privilege by Single
Policy Verification” is the combined results of Deny and Deny in the table of “Policy (s)
and Matching result against the selected security requirement” via the Policy Combination
Algorithm. In other words, the privilege result is the combined results of all policy through
the policy combination algorithm.

Subject Privilege Preview answers the question the access privilege of a subject, e.g. a role, and
from which the policy author can check if any AC flaws. The Subject Privilege Preview results can
be exported as Excel table, enlarged view, and printout.

%S ¢ (Z) Model Verificat Access Privilege Preview — -] i
ummary odel Verification g (ﬁJ (1): Access Privilege Preview ‘ (5): Configure the
Subject Access Rss}xg Access Verification Method
Craose Assource Amnbute Chosose Policies
‘ (2): Resource Access ‘
‘ (3): Choose Resource (4): Choose one or more
Attribute policies TE A
= .
Select All v @ —
Select Al «. @ t ‘ (6): Verification button

Figure 83: Resource Access Privilege Preview

7.12.8 Resource Access Privilege Preview

Resource Privilege Preview is to preview who (e.g., the subject attribute) can access a given re-
source, e.g., who can access a resource, and what action can be taken for the specific resource,
which provides a way for a policy author to verify if the resource is really protected as intention.
Figure|83|shows the steps to generate a Resource Access Privilege Preview: (1) Click “Access Priv-
ilege Preview”, (2) Click the “Resource Access”, (3) Choose a set of Resource Attributes from the
dropdown menu under “Choose Resource Attribute”, (4) Choose a set of policies from the drop-
down menu under “Choose Policy (Drag to reorder)” box, (5) Configure a verification method, (6)
Click the Vellication button to start a query.

Copyright (©InfoBeyond Technology, LLC Page 89

= Summary (-) Model Verification Access Prvilege Preview

Subject Access Resource Access
Single policy is chosen

Choose Resource Atvibute Choose Poli Choose Verification

ABAC : Nursing_Attendant_Polic
LA P — segepicy v
® Patient Record = Prescription v @ ® ABAC - Nursing_Attendant_Poiicy ~ @

Access Privilege for Resource: Patient | Access Privilese
Record = Prescription &

Access Privilege by Single Policy ver:r:caﬁo?’(hrst Applicable & Deny Biased) : Patient Record = Prescription

L]
rme Congition [
Access Privilege of Permission ~
for Head Nursing to create
Prescription
= — ~—
stmeEnteringfrom: amE— | S
Is_login permit = True TS Permit
5_login perm | ’ Permit
Permit
Permit
Permit bt
Policy(s) 8nd Match result sgainst the selcted security requirement arch [xH] L]
y Hame Rule Combination Algorithm orcement Algarithm | Gombines Baciin [
ABAC : Nursing_Attendant_Policy First Agplicatle Dery Biased Combined policy result Permit s
Rule(s) and Match result of Selected Policy against the selcted security requirement: ," Search u; = |.=‘
H
Suvject Decisio Maxcn Resurt ©
Dery Not Applicable A
Derny Not Applicable
Perm: Not Applicable
v N e Amaticania
Fermit Permit

Not Apglicable
Not Applicable
Not Applicable
Not Applicable v

Figure 84: Resource Access Privilege Preview by Single Policy

Single Policy: Figure [84] shows the configuration of Resource Privilege Preview from a single
policy. As shown in Figure [84] a resource attribute value of Patient Record = Prescription is
given. This is to query who can access to the Resource of Patient Record = Prescription with
what actions. As only one policy is chosen for the query, the verification method is “Single Policy”,
as shown in Figure[84] After clicking on the Run Verification icon, the access privilege results have
presented that match with the query. Particularly, the access privilege query is a verification process
and the results are shown in three tables:

e Access Privilege by Single Policy Verification: This table shows all possible subjects
against the resource (e.g., Patient Record = Prescription) with the privilege (Deny or
Permit). The example highlighted in Figure |84 can be read as Rule = Head Nurse —
Subject Create — Action Prescription — Resource is Permit — Privilige.

e Policy (s) and Match result against the selected security requirement: This table shows
the privilege (i.e., Permit) of the select policy configuration including the Policy Name, Rule
Combining Algorithm, and Policy Enforcement algorithm.

e Rule (s) and Match result of selected security requirement: This table shows the rules
and the testing results against the query.

Resource Privilege Preview answers the question the resource access privilege, e.g., who can access
the resource of concern, and from which the policy author can check if any AC flaws. The Resource
Privilege Preview results can be exported as Excel table, enlarged view, and printout.

Copyright ©InfoBeyond Technology, LLC Page 90

=) Summary () Model Verification '“{ Access Privilege Preview

Subject Access Resource Access

Choose Rescurce Atirioute Chosss Policies Chasse Varifization

p. Riscord =y ABAC : Nursing_Attendant_Policy
atient Record = Prescription [ABAC Miwite Poley | Verification Merged Policy

Rule Combination Algorithm First Applicable v O
® ERe FNoced = P mvcrgtum ¥ @ (® | ABAC : Midwife_Policy v ® Enforcement Algorithm Deny Biased
Access Privilege for Resource: Patient .
o Access Privilege
Record = Prescription |

#2

Access Privilege by Merged Policy Verification (First Applicable & Deny Biased) : Patient Recora = Prescription

Access Privilege of Permission
for Head Nursing to create

Prescription
Ee—] A

u
L
3 3
>

entering t

Two policies are merged: ABAC:
Midwife Policy and ABAC:
Nursing Attendant Policy Agtio

Policy(s) and Match vﬁu\ the selcted security reguirement: R]
\ Rule & ement Algorithm =
Merged Folicy : [ABAC - Midwife_Poficy, ABAC : Nursing_Attendant_Policy] ery Bissed &
H
Rule(s) and Match result of Selected Policy against the selcted security requirement: \Search e
Decis Match Resunt]
Den Not Agplicable ~
Deny Opeipatea \ Not Applicable
Pors o M
Permit © Matched result Not Applicasie
ermit e ey \‘ Not Applicable
v Permit
Not Applicable
Not Applicable
| Not Applicable
Permit nrerted Not Agplicable v

Figure 85: Resource Access Privilege Preview by Merged Policy

Merged Policy: Figure [81]shows the configuration and results of Resource Privilege Preview with
merged policy. Similar to Figure [84] this example queries who can access the resource attribute
value, i.e., Patient Record = Prescription, with what actions. Differently, two policies are
chosen and these two policies are individually tested against the query. It chooses a “Combined
Policy” for policy combination, as shown in Figure 81} The combined policy is configured with
rule combination algorithm and policy enforcement algorithm, i.e., First Applicable and Deny
Biased respectively. After clicking on the Run Verification icon, the access privilege results are
demonstrated that match the query. Particularly, the results are shown in two tables:

e Access Privilege by Merged Policy Verification: This table shows all possible accessing
requests of the given subject (e.g., Role = Nursing Attendant) and the results of access
privilege (Deny or Permit) against all rules of the policies. The highlighted line in Figure
1] can be read as an request of Nursing Attendant — Subject for Create — Action to
Prescription — Resource is Permit — AccessPrivilige. If such a Decision is not the
intended one, the policy author can revise the rule in order to achieve an expected result,
e.g., Deny. The policy author can review all the results to check if they satisfy the AC
security requirement.

e Policy (s) and Matching result against the selected security requirement: This table
shows the select policy configuration including the Policy Names, Rule Combining Algo-
rithm, and Policy Enforcement algorithm.

The policy author can review all the results to check if they satisfy all the AC security requirements.

Copyright (©InfoBeyond Technology, LLC Page 91

= Summary () Model Venfication ‘Z{ Access Privilege Preview

Subject Access Resource Access

Crosss Rescurss Atvibute Crasss Polizies Choose Venfizstion

Policy(s) and Match result against the seicted security requirement Search -
Falicy Name Rule Compination Algaritnm Policy Enforcement Algarahm Comines Resutt

ABAC : Migwite_Policy

ABAC Nursing_Attendant_Poiicy I First Applicatie Deny Biased Deny

Rule{s) and Match result of Selected Policy against the selcted security requirement: Search HE =
tatch Resuit
Not Applicatie
Not Applicable
Not Applicable
Mot Applicasie
Not Applicadle
Not Apolicable
Not Applicable

3/3(3/3/3(3[3|3 &

Not Agglicatle

P Record = P ABAC - Nursing_Attendant_Palicy
atient Record = Prescription ABAC - Midwife_Policy Verification Combined Policy
Policy C: Algorthm First Appli v O
® = ipti v
® Patient Record = Prescnption @ @ ABAC - Midwife_Policy = @
w =T ES
Access Privilege by Combined Policy Verification (First Applicable) : Patient Record = Prescription Search 0=

> a

<> [a|d (<

a &

>

Figure 86: Resource Access Privilege Preview by Combined Policy

Combined Policy: Figure [82] shows the configuration of Subject Privilege Preview by combined
policy. Different than the merged policy, the combined policy tests the query against each policy
and the results are combined by the policy combining algorithm. Figure 80| shows the same query
as in Figure 81| with a subject attribute values of Role = Nursing Attendant: what the Resource
that Role = Nursing Attendant) can access with what actions. The verification method is
“Combined Policy” as shown in Figure After clicking on the Run Verification icon, the access
privilege results are shown in two tables:

e Access Privilege by Single Policy Verification: It shows all possible accessing requests for
Role = Nursing Attendant with access privilege (Deny or Permit). The highlighted line in
Figure[81|can be read as an request of Nursing Attendant — Subject for Create — Action
to Prescription — Resource is Permit — AccessPrivilige.

e Policy (s) and Matching result against the selected security requirement: This table
shows two policies, including the Policy Name, Rule Combining Algorithm, and the Policy
Enforcement algorithm. Meanwhile, it shows the verification results of these two policies,
and both results are Deny in the example. The Deny result in the table of “Access Privilege
by Single Policy Verification” is the combined results of Deny and Deny in the table of
“Policy (s) and Match result against the selected security requirement” via the Policy Com-
bination Algorithm. In other words, the privilege result is the combined results of all policy
through the policy combination algorithm.

Subject Privilege Preview answers the question the access privilege of a subject, e.g. a role, and

Copyright (©InfoBeyond Technology, LLC Page 92

from which the policy author can check if any AC flaws. The Subject Privilege Preview results can
be exported as Excel table, enlarged view, and printout.

{Security Model Composition

and Tests
External XACML ---===--=fc-c i
Policies XACML: Converter

XACML Graphic XACML Text-

editor based editor

Export as external XACML Policies for
deployment, e.g., to PAP

Figure 87: XACML Functional Structure

7.13 XACML Functions

XACML is a verbose language at the cost of complexity for policy editing and verification. It lacks
a user-friendly representation of the policy as the number of policy elements increases. Writing
and correcting a policy in a text-based way is difficult for a policy author as typing errors often
occur. Graphic XACML editors allow simplified policy editing. However, the current graphic
XACML editors have several limitations for professional policy authors:

e Unable to user-friendly view and track XACML elements in text due to graphic interface,
e Cumbersome to get an overview of all XACML elements in a policy.

e Doesn’t fully conform all XACML 2.0 and 3.0 specifications (e.g., data types, functions, and
algorithms).

Different than the existing graphic XACML editors, SPT provides XACML policy import, con-
vertor, editing, verification, and export. Figure |87| shows the functional structure which provides
more powerful and user-friendly XACML functions, compared to current XACML policy editors.
SPT has the unique functions:

e Security Model Converter: The XACML policies can be imported into SP7T for editing
and testing, e.g., functions in path (I) in Figure Meanwhile, a security model (e.g.,
ABAC) composed by SP7T can be automatically converted into XACML documents, e.g.,
functions in path). In this way, all the ABAC policies that are graphically composed and
tested can be automatically translated into portable XACML policies.

Copyright ©InfoBeyond Technology, LLC Page 93

e Graphic/Text Policy Editor: SP7T enables graphic policy editing as well as text-based
policy editing in an integrated way. This is different than the current graphic policy editors.
The current graphic policy editors are all limited in its flexibility and usability as they could
not allow policy editing and modification of an XACML element by text editing. A policy
author can edit a policy in both graphic or text ways, giving a clear view of the XACML
elements. XACML text editing is especially suitable for advanced users. An XACML policy
can be edited from empty or from an existing policy imported from external. Furthermore,
SPT can automatically synchronize with each other between the graphic and text-based
editing.

e XACML 2.0 and 3.0 Compatibility: SP7T policy editor is XACML 2.0 and 3.0 compatible
in supporting all their functions.

The other benefit is that SPT XACML editor is a user-friendly tool to concurrently edit and
manage a number of policies.

= € ABAC

=Sl Murse Policy ; First Applicable & Deny Biaseg

1. Subject - Role = Nurse; Resource : Pat Add a New ABAC Rule
2. Subject - Role = Nurse; Resource : Pat Update ABAC Policy
1 Multilevel Delete
of Workflow
Access Control Security Requirement I
25 Individual Security Requirement [COHVEH Policy into Xacml 3.0 Format

Model ‘

Convert Policy into Xacml 3.0 Format

Separation of Duty Security Requirement
%' Combinatorial Test Suite
XACML Editor

Figure 88: Converting an ABAC Policy into XACML Format

7.13.1 XACML Policy Converter

XACML policy converter is a function to convert the ABAC, Multilevel, or Workflow policies
composed in the security model into standard XACML policy format. It has the operational steps:

Copyright ©InfoBeyond Technology, LLC Page 94

Uodel Vv dtran

Aiciun Pribegs Proview

Figure 89: Converted an ABAC Policy in XACML Format

e Right Click on a specific policy in the security model and choose “Convert Policy into
XACML 3.0 Format”. Figure [88] shows the Nurse Policy and it has an option of “Convert
Policy into XACML 3.0 Format”.

e Click on “Convert Policy into XACML 3.0 Format” and the policy will be converted into
XACML format. Figure [89) demonstrates the results for the example Nurse Policy. The
results include the XACML policy tree and XACML text. Further graphic and text-based
editing can be conducted as illustrated in the following subsections.

@ Open
Look in
3
-—
Recent lte

Desktop

Documents

-

This PC

Network

XACML Files

Healthcare
Xacmi2Policy1
Xacmi2Policy2
Kacmi2Policy3
Xacmi2Policy4
Xacmi2Request
XacmiZResponse

W Xacmi3Policy

Xacmi3PolicyExample

File name: Xacmi3Policy.xml

Files of type: | XACML 3.0 files (*.xml)

~ Cancel

Figure 90: Import/Open an XACML File
7.13.2 XACML Policy Import

SPT allows you to import one or more external XACML 2.0 or 3.0 policy/request documents
and edit them concurrently. The operation is that first navigate you to “File”, select “Import”, and

Copyright ©InfoBeyond Technology, LLC

Page 95

then choose the XACML documents. An interface as shown in Figure 90| appears for you to select
the XACML documents to open. Multiple XACML policies can be opened at one time from the
interface and each policy is identified by a Ploicyld.

" admin_customers- ALtribotevalue

P4
¥ (3) Commit the editing to text

(2) Graphically editing

Updse Camoel admin_ emps+ Attributevalue

XACML element tree ~€=—————————p XACML text-based editing

Figure 91: An XACML Security Policy Example

Figure 91| shows an XACML example loaded in the SP7 XACML editor. It includes (i) XACML
element tree which allows graphic policy editing, and (ii) XACML text-based editing zone. The
policy editing functions are illustrated in the following subsection.

7.13.3 XACML Policy Editing

Figure 91| shows the integrated graphic and text-based policy editing:

e Graphic Editing: XACML element tree gives a tree-like structure of the policy, as shown
in Figure All the policy XACML elements can be added, edited, modified, and removed
one by one through a graphical user interface, by right clicking on a selected element. It is a
process of:

— Right Click to Edit: Right click on a policy element, a set of operational options will
appear, e.g., Step 1 in Figure[91]

— Graphic Editing: The user interface simplifies the process to edit or correct any policy
element, e.g., Step 2 in Figure has the checklist to choose the functions, algorithms,
and other schema element parameters.

— Commit the Editing to Text: The graphically edited element is automatically committed
to XACML verbose text and the addition or revision will be shown in the XACML text.

Copyright (©InfoBeyond Technology, LLC Page 96

e Text-based Editing: SP7 enables graphic policy editing as well as text-based policy edit-
ing in an integrated way. This is different to current graphic policy editor. The current
graphic policy editors are all limited in its flexibility and usability as they could not allow
policy editing and modifying an XACML element by text editing. A policy author can edit a
policy in both graphic or text ways, giving a clear view of the XACML elements. XACML
text editing is suitable for advanced users. Furthermore, SPP7T can automatically synchronize
the graphic and text-based editing.

e Synchronization: SP7T policy editor is XACML 2.0 and 3.0 Compatible.

—+-£F Model
O ABAC
Al Multilevel
ol Workflow
—-10 Access Control Secunty Reguirement
&+ Individual Security Requirement
Separation of Duty Security Reguirement
% Combinatonal Test Suite

XACML Editg

Add a XACML3 0 Policy

Add a XACML3 0 PolicySet

Add a XACML3.0 RJ&E&? KACM 30 Palicy
Add a XACML2.0 Policy

Add a XACML2 0 PolicySet

Add a XACML2 0 Request

Figure 92: Create a new XACML Policy

7.13.3.1 Graphic-based XACML Editing

Basically, graphic-based XACML editing is performed by right clicking on the policy element to
edit and add additional elements in the XACML element tree. We show this with the following
steps to graphically create and edit a new policy.

Create a New XACML Policy: Navigating to “XACML Editor” in the project tree and right
clicking “XACML Editor”, you will see the policy editing options, as shown in Figure SPT
enables you to create a policyset, policy, or policy request in the XACML 2.0 or 3.0 format:

e Policyset: A policyset represents a policy container that can hold a set of Policies, other
PolicySets, a policy-combining algorithm, and (optionally) a set of obligations and advice.

e Policy: A policy is a single access control policy that consists of a set of Rules, an identifier
for the rule-combining algorithm, and (optionally) a set of obligations or advice.

e Policy Request: It represents a request in XACML format to access control system.

Copyright ©InfoBeyond Technology, LLC Page 97

& XACML Policy Input Panel X

xacml:Policy Attributes

RuleCombiningAlgld * : | urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-overrides ~
Policyld * : urn:oassis:names:tcixacml:3.0:example:policyid:1
Version * : 1_[]|

MaxDelegationDepth:

Add Cancel

Figure 93: Create a new XACML Policy

Figure 03] shows the graphic interface to generate a policy where RuleCombiningAlgld, Policyld,
and Version are required parameters to create a policy. The mandatory parameters are marked
with a red star (k). MaxDelegationDepth is an optional parameter. After filling these parameters,
“Add” is clicked to start the editing of the policy.

= KACML Editor

B <Policy Policyld = urn-oassis:names tc:xacml:3 0:example:policyid: 1=

Add Description
Add Policylssuer
Add PolicyDefaults
" Add Target
v Add choice *

Add ObhgationExpressions
Add AdviceExpressions

Update Paolicy
Delete Policy

Figure 94: Add Policy Elements

Add a Target: By right clicking on the policy, policy XACML elements can be added as shown in
Figure[94] and the elements could be Description, Policy Issuer, PolicyDefaults, and Target. Mean-
while, Figure [94]indicates that the policy can be updated or deleted. Among the elements, a target
is mandatory. Basically, a Target is a set of simplified conditions for the Subject, Resource, and
Action that must be met for a PolicySet, Policy or Rule to apply to a given request. Right clicking
on the “Target”, you can add “Anyof”, “Allof”, “Match”, “AttributeValue”, “AttributeDesignator”,
and other elements subsequently.

Copyright (©InfoBeyond Technology, LLC Page 98

= XACML Editor

ERES <Policy Policyld = urmn-oassis:names-tc:xacmi:3 (:example policyid-1>

Add Policylssuer

= Target Add Description
¢ B0 AnyOf
=) AlIOF
=) Match
-~) AttributeValue

o (L AttributeDesignator

Add PolicyDefaults
v
~

Add Target *

Add choice * >
1) <Rule Ruleld = urn:oassis:name:tc:xacml:3.0-examp Add ObligationExpressions
Add AdviceExpressions
Update Policy

Delete Policy

Add CombinerParameters
Add RuleCombinerParameters
+' Add VariableDefinition *
+' Add Rule

_ |AddRule]

Figure 95: Add a Policy Rule

Add a Rule: By clicking on the policy, a rule can be added and Figure 93] shows the graphic
interface to add a rule. By choosing “Add Rule” under “Add Choice”, a graphic interface al-
lows the definition of “Ruleld” and “Effect”. Then, right-clicking on the rule, “Description”,

“Target”, “Condition”,*“ObligationExpressions”,and “AdviceExpression’

’ can be added to the rule.

By adding target, “Anyof”, “Allof”, “Match”, “AttributeValue”, and “AttributeDesignator” can be
graphically added for the rule. Multiple rules can be added to the policy. Moreover, “Condition”

can be added to the rule.

Fie Proect Heip
R

1lta
nhttp:

{ Fvv w3 . 0rg/ TR/ 1989 /Rec-Xpath=18991116

esignator Att

Anrauevane
AchiontrributeCasignator

Candnion
Dy
heply
Ay
Subj tattatalesgnator

Z: A parson may read any resord for whish h
guardian, and for which the patient is under 1§ ye

ignator A

XPathVersio

urnimed: exampletachemasirecs

»

Figure 96: Policy Examples

A policy could have a set of rules that are defined in a similar way. Furthermore, SPT allows
the editing of multiple policies. The policy XACML element tree can be folded/unfolded at each
branch. Figure 06 shows multiple policies and each policy have multiple rules.

Copyright (©InfoBeyond Technology, LLC

Page 99

Q

<Target>
<Subjects

Subject
<SubjectMatch Matchld=
<AttributeValue Da
<SubjectAttributeDesignator Attribute
</SubjectMatch>
</Subject>

ing-equal”
ing">physician</AttributeValue:

:2.0exampleattribute:role” 1

</Subjects>
Resources
Resource>
<ResourceMatch Match
<AttributeValue Dz
<ResourceAttributeDesignator Att
/ResourceMatch>

node-match

/md:record/md:medical</Attri

acml:l.0:resource:xpath”™ DataTyps

Figure 97: Highlight of the Subject Element with Text-editing

7.13.3.2 Text-based XACML Editing

For some policy authors, they would be like to use the text-based editing function to flexibly edit
and modify a policy or the policy elements. In addition, a policy author would like to have a clear
global view of all policy elements by text. Figure 97| shows the highlight of a Subject element and
from which the policy author can edit SubjectMatch, Attribute Value, and SubjectAttributeDesig-
nator. By reviewing the XACML code, the text-based XACML editing is very flexible and easy to
use for advanced XACML users who well understand XACML.

o - - hE e p +) -
f: i 'i. 'r.j 0 , s/ ':2) Q Q Q

AV
~ Default Font Size

\ Decrease text font size Q ¢

Text-based Policy Editing

™ Increase text font size Policy Verification with error
., Redo indication
Undo o ¢
EpOrTRACMT— 10 »[Commit the Change j» U i 11
ree
Convert from XACML 2.0 to 3.0 e ¢
‘Commit changes ‘ M }[Export XACML policy]
|Validate XACML |
(a) XACML Text-editing Functional Icons (b) Text-editing Steps to accomplish an editing

Figure 98: XACML Panel Functions

Figure 98] shows the principle of text-based XACML editing. Figure[98](a) are the functions under
the “Summary” tab. The basic idea is to (i) edit the policy from the policy editing zone, (ii) verify
the editing content, (iii) commit the modification to SPT. Figure@ (b) shows the editing process:

¢ Policy Editing: A policy author can edit the policy from the policy editing zone. He/she can
visually see the editing of a policy.

Copyright (©InfoBeyond Technology, LLC Page 100

e Policy Verification: A policy author can click on the circled green mark in Figure [98|(a) to
verify if the modified policy has any syntax error. SPT verifies if there are grammar errors.
If errors, SPT will report them with identify the line with error occurs.

o Commit the Change: A policy author then click on the commitment button (e.g., Commit
changes as shown in Figure[98|(a)) to write the modified policy into the SPT engine, which
meanwhile synchronizes the policy at the XACML element tree.

In the end, the policy author can export/save the policy into an XACML format file via the Export
XACML button as shown in Figure 08| (a).

8 Access Control System Implementation

The XACML policies generated from SPT could be incorporated into the XACML framework for
policy enforcement. The XACML framework [3] includes PEP (Policy Enforcement Point), PDP
(Policy Decision Point), PIP (Policy Information Point), PAP (Policy Administration Point), and
PRP (Policy Retrieval Point). In order to maintain the consistency between the tests and the actual
implementation, the XACML policies generated from SPT should be configured in the PAP and
the policy/rule combining algorithms should be exactly configured as that in the SP7T tests.

Copyright (©InfoBeyond Technology, LLC Page 101

9 References

1.

10.

11.

Security Policy Tool, “Access Control Flaws: What Are They and How Can They Be Avoided?”,
Available at: www.Securitypolicytool.com, 2017.

Vincent C. Hu, Rick Kuhn, Dylan Yaga, “NIST SP 800-192: Verification and Test Meth-
ods for Access Control Policies/Models”, Computer Security Division, National Institute
of Standards and Technology, 2017, Alliable at: https://beta.csrc.nist.gov/News/2017/NIST-
Release-SP-800-192.

. Vincent C. Hu, and Karen Scarfone “NIST IR 800-7874: Guidelines for Access Control Sys-

tem Evaluation Metrics”, Computer Security Division, National Institute of Standards and
Technology, 2012, Alliable at: http://nvlpubs.nist.gov/nistpubs/ir/2012/NIST.IR.7874.pdf.

Vincent C. Hu, David Ferraiolo, Rick Kuhn, Adam Schnitzer, Kenneth Sandlin, Robert

Miller, Karen Scarfone “NIST SP 800-162: Guide to Attribute Based Access Control (ABAC)

Definition and Considerationss”, Computer Security Division, National Institute of Stan-

dards and Technology, 2014, Alliable at: http://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.SP.800-
162.pdf.

. V. C. Hu, D. F. Ferraiolo, and D. R. Kuhn, “Assessment of Access Control Systems,” NIST

IR 7316, Computer Security Division, National Institute of Standards and Technology, 2006.

OASIS, “eXtensible Access Control Markup Language(XACML),” http://www.oasis-open.org.

. NIST, “Computer Security Resource Center, Access Control Policy Tool (ACPT),” Available

https://www.nist.gov/programs-projects/access-control-policy-tool-acpt.

K. Jayaraman, V. Ganesh, M. Tripunitara, M. C. Rinard, and S. J. Chapin, “ARBAC Pol-
icy for a Large Multi-National Bank,” IEEE International Conference on Software Testing,
Verification, and Validation Workshops 2014.

. RFC 4949: Internet Security Glossary, Version 2, Network Working Group, 2007.

Federal Financial Institutions Examination Council: Authentication in an Internet Banking
Environment.

MIL-STD-188.

Copyright (©InfoBeyond Technology, LLC Page 102

	Preface
	Access Control Flaws
	NIST's Specification
	About the Security Policy Tool
	The Use of the Manual

	Summary
	Acknowledgement
	Concept
	Policy and Attribute
	Condition
	Inheritance
	AC Algorithm
	Combining Algorithm
	Policy Enforcement Algorithm

	AC Models
	ABAC
	MultiLevel Security Model
	Workflow Model

	XACML

	Policy Tests and Analysis
	General Testing Procedure
	AC Security Requirement
	Policy Tests
	Single vs. Multiple Policy Verification
	Merged Policy Verification
	Combined Policy Verification
	Merged Policy Separation of Duty
	Combined Policy Separation of Duty
	Access Privilege Preview

	Policy Analysis and Typical AC Flaw
	Consideration of Multiple Policies

	Operational Guide
	SPT Installation
	Project Main Interface
	New or Open an Project
	Saving a Project
	Add/Update/Delete Attributes and Attribute Values
	Attribute Composition
	Attribute Values

	Condition
	Subject/Resource Inheritance Composition
	ABAC Model Composition
	Multilevel Security Model Composition
	Workflow Model
	Access Control Security Requirement
	Individual Security Requirement
	Separation of Duty Security Requirements
	Combinatorial Test Suite

	Policy Testing and Analysis
	Integrity and Consistence Check
	Testing Policy and Method Configuration
	Single Policy Verification
	Merged Policy Verification
	Combined Policy Verification
	Separation of Duty
	Subject Access Privilege Preview
	Resource Access Privilege Preview

	XACML Functions
	XACML Policy Converter
	XACML Policy Import
	XACML Policy Editing

	Access Control System Implementation
	References

