WWW.SECURITYPOLICYTOOL.COM 1

Healthcare Policy Test Cases

(InftoBeyond lechnology LL(})

Abstract

This document demonstrates access control test cases using Security Policy Tool, a software tool for
Access Control Security Managers, Policy Authors, and other IT Security Professionals specializing in the
performance of access control systems. Access control policies are designed to protect the accessibility of
online resources in networks, 10Ts, healthcare systems, financial service systems, enterprise IT and clouds,
military systems, and other online environments. There are several challenges in building robust access
control models for these systems including (i) effectively composing secure policies and rules, (ii) testing
these policies systematically, (iii) verifying these policies to prevent access control leaks. Security Policy
Tool solves these issues by providing powerful access control policy modeling, testing, and verification
features that empower organizations to close the door to access control leaks.

Index Terms

Access control, attribute-based access control (abac), role-based access control (rbac), security policy
editing, test, verification, deployment, access control leaks, XACML, software tool.

<+

1 INTRODUCTION TO TEST CASES

This document and attached Fecurity Policy Tool — Project Filed have been designed to help you
gain an understanding of what common access control errors look like, how they are created, and
how to resolve them. Organizations who leverage Security Policy Tool’s systematic modeling,
testing and verification features are empowered to efficiently identify errors and close the door
to access control leaks.

These Healthcare Policy test cases are based on examples previously created by the Nafional
[nstitute of Standards & Technology (NIST) to demonstrate commonly found errors in access
control policy logic similarly. These test cases consist of policies/rules from NIST’s example
as well as modifications to better illustrate how Security Policy Tool enhances access control
security. The goal of these test cases is to provide a starting point for what to expect as you go
on to use Security Policy Tool to analyze your own policy verification results for errors.

2 SETTING UP THE POLICIES — TEST CASE 1 (RULE CONFLICT)

This healthcare example contains two policies (ManagerPolicy & DoctorPolicy). The Attribute
/ Attribute Values include in these policies are as shown in Figure .

o Contact us at: E-mail: Info@Securitypolicytool.com

Security Policy Tool (fvww.Securitypolicyfool.com) is a commercial version of NIST(National Institute of Standards and Technology)'s ACPT
(Access Control Policy Tool). With tremendous consultation with NIST experts, Security Policy Tool substantially enhances and expands the
NIST’s ACPT design with advanced features for achieving high security confidence access control levels such that it can be commercialized.
The development of Security Policy Tool is financially sponsored by NIST via a SBIR (Small Business Innovation Research) Phase I and
II programs. It specifically improves the NIST's ACPT design to provide a robust, unified, professional, and functionally powerful access
control policy tool.

www.InfoBeyondtech.com
https://securitypolicytool.com/Content/files/HealthcareTestCases.zip
https://csrc.nist.gov/Projects/Access-Control-Policy-Tool/Beta-Release-Of-Access-Control-Policy-Tool
https://csrc.nist.gov/Projects/Access-Control-Policy-Tool/Beta-Release-Of-Access-Control-Policy-Tool
www.Securitypolicytool.com

WWW.SECURITYPOLICYTOOL.COM

File Project Help
I [I B R e . . n b L & » I 7 S -4 - B & . = -
28D ARA-E-X -®- -6 i & A & -|B = o
[Z HealthcareTestCaset spt €3
| search HealthcareTestCasel.spt f
A
[& HealthcareTestCased spt
i 5 e @ 5 rows out of 5
e @ Attribute Attribute
Ef oy Subject Type Total Attribute(s) Total Attribute Valus(s)
S & Doctor; http:/fwww.w3.org/2001/XMLSchema#string Subject 2 4
i@ doctor 1 Resource 3 El
- Subjects Action 1 2
doctor_2 e) - = =
Environment 0 0
doctor_3 Condition 0 0
=@ Manager ; http://waw.w3.0rg/2001/XMLSchema#string
: doctor_3
- [Resource
ij OldMedicalRecords ; http://www w3.org/2001/XMLSchema#string Inheritance @ 2 rows out of 2

PatientA_OldMedicalRecords

PatientB_0OldMedicalRecords

PatientC_OldMedicalRecords

- @ PatientPersonalinfo ; http:/mww.w3.org/2001/XWLSchema#string
Patientd_Personalinfo

PatientB_Personalinfo

PatientC_Personalinfo

[~ @ PrivateMotes ; http://www.w3.0rg/2001/XMLSchematistring
PatientA_PrivateMotes

PatientB_PrivateMotes

PatientC_PrivateMotes

Type

Mo of Beneficiarie(s)

Subject Inheritance

Resource Inheritance

Resources

=

B3 ¥ Action
B HealthcareActions ; hitp//www w3 org/2001/XMLSchemasstring
; View
Add

@ Envirenment il e—— No Environments
@ Condition === No Conditions

(= Inheritance

Subject Inheritance

o ;5; Resource Inheritance

Fig. 1. Test Case 1

Actions

Access Control Model @ 3rowsoutof3
Type No of Policy(s)
ABAC 2
Multilevel 0
Workflow 0
Security Requirsmant @ 3rows outof 3
Type Mo of i
Individual Security Reguirement 1
Combinatorial Test Suite Q
Individual Security Reguirement a

3 MODELING YOUR PoLicY — TEST CASE 1 (RULE CONFLICT)

Now that we have entered our attributes we can model our two policies (ManagerPolicy &
DoctorPolicy). See the list below of the rules contained in each of these policies. You can open
a “New (blank) Project” and build these policies by entering the following rules below:

ManagerPolicy:

(Subject = Any Value & Manager = doctor_3, View, PatientA_OldMedicalRecords) — Permit
(Subject = Any Value & Manager = doctor_3, View, PatientB_OldMedicalRecords) —Permit
(Subject = Any Value & Manager = doctor_3, View, PatientC_OldMedicalRecords) —Permit
(Subject = Any Value & Manager = doctor_3, View, PatientA_Personallnfo) —Permit
(Subject = Any Value & Manager = doctor_3, View, PatientB_Personallnfo) —Permit
(Subject = Any Value & Manager = doctor_3, View, PatientC_Personallnfo) —Permit
(Subject = Any Value & Manager = doctor_3, View, PatientA_PrivateNotes) —Deny

(Subject = Any Value & Manager = doctor_3, View, PatientB_PrivateNotes) —Deny

(Subject = Any Value & Manager = doctor_3, View, PatientC_PrivateNotes) —Deny

DoctorPolicy:

(Subject = Any Value & Doctor = doctor_1, View, PatientA_OldMedicalRecords) —Permit
(Subject = Any Value & Doctor = doctor_1, View, PatientB_OldMedicalRecords) —Deny
(Subject = Any Value & Doctor = doctor_1, View, PatientC_OldMedicalRecords) —Deny
(Subject = Any Value & Doctor = doctor_1, View, PatientA_Personallnfo) —Deny
(Subject = Any Value & Doctor = doctor_1, View, PatientB_Personallnfo) —Deny

(Subject = Any Value & Doctor = doctor_1, View, PatientC_Personallnfo) —Deny
(Subject = Any Value & Doctor = doctor_1, View, PatientA_PrivateNotes) —Permit
(Subject = Any Value & Doctor = doctor_1, Add, PatientA_PrivateNotes) —Permit

WWW.SECURITYPOLICYTOOL.COM 3

(Subject = Any Value & Doctor = doctor_1, Action: Any, PatientB_PrivateNotes) —Deny
(Subject = Any Value & Doctor = doctor_1, Action: Any, PatientC_PrivateNotes) —Deny
(Subject = Any Value & Doctor = doctor_2, View, PatientA_OldMedicalRecords) —Deny
(Subject = Any Value & Doctor = doctor_2, View, PatientB_OldMedicalRecords) —Permit
(Subject = Any Value & Doctor = doctor_2, View, PatientC_OldMedicalRecords) —Deny
(Subject = Any Value & Doctor = doctor_2, View, PatientA_Personallnfo) —Deny
(Subject = Any Value & Doctor = doctor_2, View, PatientB_Personallnfo) —Deny
(Subject = Any Value & Doctor = doctor_2, View, PatientC_Personallnfo) —Deny
(Subject = Any Value & Doctor = doctor_2, Action: Any, PatientA_PrivateNotes) —Deny
(Subject = Any Value & Doctor = doctor_2, View, PatientB_PrivateNotes) —Permit
(Subject = Any Value & Doctor = doctor_2, Add, PatientB_PrivateNotes) —Permit
(Subject = Any Value & Doctor = doctor_2, Action: Any, PatientC_PrivateNotes) —Deny
(Subject = Any Value & Doctor = doctor_3, View, PatientA_OldMedicalRecords) —Deny
(Subject = Any Value & Doctor = doctor_3, View, PatientB_OldMedicalRecords) —Deny
(Subject = Any Value & Doctor = doctor_3, View, PatientC_OldMedicalRecords) —Permit
(Subject = Any Value & Doctor = doctor_3, View, PatientA_Personallnfo) —Deny
(Subject = Any Value & Doctor = doctor_3, View, PatientB_Personallnfo) —Deny
(Subject = Any Value & Doctor = doctor_3, View, PatientC_Personallnfo) —Deny
(Subject = Any Value & Doctor = doctor_3, Action: Any, PatientA_PrivateNotes) —Deny
(Subject = Any Value & Doctor = doctor_3, Action: Any, PatientB_PrivateNotes) —Deny
(Subject = Any Value & Doctor = doctor_3, View, PatientC_PrivateNotes) —Permit
(Subject = Any Value & Doctor = doctor_3, Add, PatientC_PrivateNotes) —Permit

After entering the rules above your modeled policies should look like the screenshots below. If
you did not create your own Project File, you can simply open Security Policy Tool — Project
File: HealthcareTestCasel and these policies will have been already created for you.

ManagerPolicy Policy(s) Summary @ 1rowsoutof 1 Search g &
Model Policy Name ‘ ule Combination Algorithm Policy Enforcement Algorithm No. of Rule(s Time Created Last Modified
ABAC ManagerPolicy] Deny-overrides Deny Biased S June 13, 2018 12:25:42 June 13, 2018 12:29:42
Rule (s) defined with selected policy (ManagerPolicy) ® 9 rows out of 9 Search ﬂ§ (-
Sequence No Subject Reso! A Environment ondition Decision nheritance Relation
1 & Manager = doctor_3 OldMedicalRecords = _OldMedicalRecords Permit Originated
2 & Manager = doctor_3 | OldMedicalRecords = Patie OldMedicalRecords Permit Originated
3 & Manager =doctor 3 | OldMedicalRecords = PatientC_OldMedicalRecords Permit Originated
4 & Manager = doctor_3 PatientPersonalinfo = PatientA_Personalinfo Permit Originated
H & Manager = doctor_3 Permit Originated
€ & Manager =doctor 3 | Permit Originated
7 & Manager = doctor_3 Den Originated
8 & Manager = doctor_3 | Deny Originated
9 & Manager = doctor_3 PrivateNotes = PatientC_PrivateNotes Deny Originated

Fig. 2. ManagerPolicy

WWW.SECURITYPOLICYTOOL.COM 4
DoctorPolicy Policy(s) Summary @ Lrowsoutof 1 search <R
Model Policy Name: Rule Combination Algorithm Policy Enforcement Algorithm No. of Rule(s) Time Created Last Modified
ABAC DoctorPolicy Deny-overrides Deny Biased 30 June 13,2018 12:33:14 June 13, 2018 12:33:14
Rule (5) defined with selected policy (DoctorPolicy): @ 30 rows out of 30 Search ﬂg 'E‘
Seguence No Subject Resource Action Environment Condition Decision Inheritance Relation
1 5= & Doctor = doctor_1 OldMedicalRecords = PatientA_OldMedicalRecords HealthcareActions = View Permit Originated
2 3lu= & Doctor = doctor_1 OldMedicalRecords = PatientB_OldMedicalRecords HealthcareActions = View Deny Originated
3 2lus & Doctor = doctor 1 | QldMedicalRecords = PatientC_OldMedicalRecords HealthcareActions = View Deny Originated
4 L= & Dector = doctor 1 PatientPersonalinfo = PatientA_Perscnalinfo HealthcareActions = View Deny Originated
5 & Doctor = doctor 1 PatientPersonalinfo = PatientB_Personalinfo HealthcareActions = View Deny Originated
6 & Doctor = doctor 1 PatientPersonalinfo = PatientC_Personalinfo HealthcareActions = View Deny Originated
7 & Doctor = doctor 1 PrivateNotes = PatientA_PrivateNotes HealthcareActions = View Permit Originated
8 L= & Dector = doctor 1 PrivateNotes = PatientA_PrivateNotes HealthcareActions = Add Permit Originated
5 -\ue & Doctor = doctor 1 PrivateNotes = Patient8_PrivateNotes - Deny Originated
10 5|ue & Doctor = doctor 1 PrivateNotes = PatientC_PrivateNotes 2 Any Value Deny Originated
11 - & Doctor = doctor 2 OldMedicalRecords = PatientA_OldMedicalRecords HealthcareActions = View Deny Originated
12 5| .= & Doctor = doctor 2 OldMedicalRecords = PatientB_OldMedicalRecords HealthcareActions = View Permit Originated
13 & Doctor = doctor_2 OldMedicalRecords = PatientC_OldMedicalRecords HealthcareActions = View Deny Originated
14 & Doctor = doctor 2 3 sonalinfo = PatientA_Pers fo HealthcareActions = View Deny Originated
15 = & Doctor = doctor 2 PatientPersonalinfo = PatientB_Personalinfo HealthcareActions = View Deny Originated
16 & Doctor = doctor 2 PatientPersonalinfe = PatientC_Persenalinfo HealthcareActions = View Deny Originated
17 slue & Doctor = doctor 2 PrivateNotes = PatientA_PrivateNotes Action = A alue Deny Originated
18 = & Doctor = doctor 2 PrivateNotes = Patient8_PrivateNotes HealthcareActions = View Permit Originated
19 slue & Doctor = doctor 2 PrivateNotes = PatientB_PrivateNotes HealthcareActions = Add Permit Originated
20 & Doctor = doctor 2 PrivateNotes = PatientC_PrivateNotes Action = A e Deny Originated
21 & Doctor = doctor_3 OldMedicalRecords = PatientA_OldMedicalRecords HealthcareActions = View Deny Originated
22 Dector = doctor 3 OldMedicalRecords = PatientB_OldMedicalRecords HealthcareActions = View Deny Originated
23 & Doctor = doctor 3 OldMedicalRecords = PatientC_OldMedicalRecords HealthcareActions = View Permit Originated
24 & Doctor = doctor 3 PatientPersonalinfo = PatientA_Perscnalinfo HealthcareActions = View Deny Originated
25 & Doctor = doctor 3 PatientPersonalinfo = PatientB_Personalinfo HealthcareActions = View Deny Originated
26 - & Doctor = doctor 3 PatientPersonalinfo = PatientC_Personalinfo HealthcareActions = View Deny Originated
27 . & Doctor = doctor 3 PrivateNotes = PatientA_PrivateNotes A = Any Value Deny Originated
28 = Any Value & Dector = doctor 3 PrivateNotes = PatientB_PrivateNotes Action = Any Value Deny Originated
25 - & Doctor = doctor 3 PrivateNotes = PatientC_PrivateNotes HealthcareActions = View Permit Originated
30 s/ue & Doctor = doctor 3 PrivateNotes = PatientC_PrivateNotes HealthcareActions = Add Permit Originated

Fig. 3. DoctorPolicy

4 INDIVIDUAL SECURITY REQUIREMENTS - TEST CASE 1

The final step before analyzing these policies for errors is to create
ments to use for testing. If you are building a “New (blank) Project”

the security requirements as follows.

Individual Security Requirements:
= doctor_3 & Doctor = doctor_3) & (Action = View) & (PrivateNotes = PatientC_PrivateNotes) — decision = Permit
= doctor_3 & Doctor = doctor_3) & (Action = View) & (PatientPersonallnfo = PatientC_Personallnfo)

(Manager
(Manager

— decision

= Permit

(RULE CONFLICT)

individual security require-
on your own you will enter

After entering the rules above your individual security requirements should look like the screen-
shot below. If you did not create your own Project File you can simply open Security Policy
Tool — Project File: HealthcareTestCasel and these requirements will have been already created

Test Case 1(s) Summary @ 1rowsoutof 1 Search <]
Access Control Security Requirement Reguirement Schema No. of Security Requirement(s)
Individual Test Case 1 2
t of -
Security Requirement (s) defined under selected Requirement Schema (Test Case 1): @ 2rows outof 2 Search Ei =
Sequence No Subject Resource Action Environment Condition Decision
1 Doctor = doctor_3 & Manager = doctor_3 PrivateNotes = PatientC_PrivateNotes HealthcareActions = View ment= A n = Any Value Permit
2 Doctor = doctor_3 & Manager = dector_3 PatientPersonalinfo = PatientC_Personalinfo HealthcareActions = View ent = A alue = Any Value Permit

Fig. 4. Individual Security Requirements

WWW.SECURITYPOLICYTOOL.COM 5

5 PoLicY VERIFICATION/ANALYZING RESULTS - TEST CASE 1 (RULE CONFLICT)

Now that we are ready to test our policies let’s discuss the error we will be looking at in this
tirst example. When policies are designed, there is potential for a “Rule Conflict” being created.
A Rule Conflict occurs when two or more rules are defining opposite authorization in an access
control policy.

In our example, an individual at this hospital has a role of both doctor and manager at the facility.
Due to this, the individual is assigned both (Doctor: doctor_3 and Manager: doctor_3) attribute
values by the system during access evaluation. In the ManagerPolicy it defines that managers
can view PatientPersonallnfo but cannot view PrivateNotes. However, in the DoctorPolicy the
opposite has been defined (e.g., can view PrivateNotes; cannot view PatientPersonallnfo).

Next, we will run two “Single Policy” Verifications to reveal the Rule Conflict that is present in
our policies. To do this, we will select ManagerPolicy and Test Case 1 (security requirement) as
a Single Policy Verification and also choose DoctorPolicy and Test Case 1 (security requirement)
as a Single Policy Verification and analyze our two verification results. Again, this will have
already been done for you if you open Project File: HealthcareTestCasel.

. c outof 1 -
Pelicy Verification (June 13, 2018 18:06:47)(s) Summary B lrowsoutoil Search GE =

Name verification Type Verification Technique Number of Policy(s Combination Algorithm Enforcement Algorithm

UpToDate Policy Verification (June 13, 2018 18:06:47) | standard [Single Policy [1 [Deny-overrides [Deny Biased | ABAC:ManagerPolicy

Result(s) with selected verification (Policy Verification (June 13, 2018 18:06:47)) ® 2 rows out of 2 Search x =]

Doc & Manag rivate FALSE
Doc or_3 & Manager =d PatientPer: Permit TRUE
Policy Verification (June 13, 2018 18:06:54}(s) Summary ® 1 rows outof 1 search Bt S
Status Name erification Type erification Technique Number of Policy(s Combination Algorithm Enforcement Algorithm Policy List (&
UpToDate | Policy Verification (June 13, 2018 18:06:54) [Standard [Single Policy | i [Deny-overrides | Deny Biased ABAC:DoctorPolicy =
Result(s) with selected 3, 2018 18:06:54)) ® 2 rows out of 2 Search ER
m D =
Test Case 1 | Doctor = doctor_3 & Manager = doctor_3 | PrivateNotes = Pa! t} [permit | TRUE ~
Test Case 1 Doctor = doctor_3 & Manager = doctor_3 PatientP: HealthcareActions = View Permit FALSE v

Fig. 6. DoctorPolicy x Test Case 1

As you can see from our verification results our policies are both Permitting and Denying the
individual (Doctor = doctor_3/Manager = doctor_3) from viewing PatientC_Personallnfo and
PatientC_Private Notes which is known as a Rule Conflict error.

6 RESOLVING THIS ERROR - TEST CASE 1 (RULE CONFLICT)

To solve a Rule Conflict the policy author would need to go back and either update or delete
the related rules to the error. To view which specific Rules are resulting in these Verification
Results we can click on all (4) of our specific Results (DoctorPolicyxTestCasel: False;True &
ManagerPolicyxTestCasel: True;False) and see which Rules have “Match Results”.

WWW.SECURITYPOLICYTOOL.COM

See the screenshots below of our two Policies Match Results to discover which specific rules are
related to our Verification Results (e.g., False, True).

palicy Verification (June 13, 2018 18:06:47)(s) Summary ® 1rowsoutof1 Search X
Status Name Verification Type Verification Technique Number of Policy(s) Combination Algorithm Enforcement Algorithm Policy List
Policy Verification (June 13, 2018 18:06:47) Single Policy 1 Deny- Deny Biased ABAC: g Y
Result(s] with selected verification (Policy Verification (June 13, 2018 18:06:47]) @ 2 rows outof 2 search EI
Regquirement Schema Subject Resource Action Environment Condition Decision Verification Result
Test Case 1 Doctor = doctor_3 & Manager = doctor_3 = PatientC_| HealthcareActions = View ronment = Any Valus_| Consition = Any Value Permit FALSE
Test Case 1 Doctor = doctor_3 & Manager = doctor_3 PatientPersonalinfo = PatientC_Personalinfo HealthcareActions = View Enviranment = Any Valys Conditinn = Any Valys Permit TRUE.
Policy(s) and Matching result against the selcted security requirement: <@ 1rowsoutofl Search ﬂ! ll'l

Policy Name Rule Combination Algorithm Policy Enforcement Algorithm Combined Result
ABAC : ManagerPolicy Deny-overrides Deny Biased Deny
Rule(s) and Matching result of Selected Policy against the selcted security requirement: @ 9rows outof 9 Search m t'
Sequence No Subject Resource Action Environment Condition Decision | Inheritance Relation Match Result
1 /3lus & Manager = doctor_3 | O ecords = Patienth_Ol ecords | HealthcareAction Permit Originated Not Applicable
2 = & Manager = doctor_3 | OldMedicalRecords = Patients_Ol H Acti Permit Originated Not licable
3 /3lue & Manager = doctor_3 | OldMedicalRecords = PatientC_OldMedicalRecords | HealthcareActions = View Permit Originated Not Applicable
4 ue & Manager = doctor 3 i fo = PatientA_| i HealthcareActions = View Permit Originated Not Applicable
s & Manager = doctor_3 fo = Patient8_| HealthcareActions = View Permit Originated Not Applicable
6 & Manager = doctor 3 Patier linfo = PatientC_f linf HealthcareActions = View Permit Originated Not Applicable
7 & Manager = doctor_3 PrivateNotes = PatientA_PrivateNotes HealthcareActions = View Deny Originated Not Applicable
8 ny = & Manager = doctor_3 PrivateNotes = PatientB_f HealthcareActions = View Deny Originated Not Applicable
9 Zny v3lue= & Manager = doctor_3 = PatientC_f [thcareActions = View ronment = Any Value | Condition = Any Value [Deny Origi Deny
Policy Verification (June 13, 2018 18:06:47)(s) Summary @ 1rowsoutof 1 Search I
Status Name Verification Type Verification Technique Number of Policy(s) Combination Algorithm Enforcement Algorithm Policy List
UpToDate Policy Verification (June 13, 2018 18:06:47) Standard Single Policy 1 Deny-overrides Deny Biased ABAC:ManagerPolicy
Result(s) with selected verification (Policy Verification (June 13, 2018 18:06:47)) @ 2rows outof 2 | Search]
Requirement Schema Subject Resource Action Environment Condition cision Verification Result
Test Case 1 Doctor = doctor_3 & Manager = doctor_3 Pri = PatientC_PrivateNotes HealthcareActions = View nme value Permit FALSE
Test Case 1 Doctor = doctor_3 & Manager = doctor_3 F = PatientC_F H Actions = View ranment = Any Value Permit. TRUE
Policy(s) and Matching result against the selcted security requirement: @ lrowsoutofl Search]

Policy Name Rule Combination Algorithm Policy Enforcement Algorithm Combined Result
ABAC : ManagerPolicy Deny-overrides Deny Biased Permit
Rule(s) and Matching result of Selected Policy against the selcted security requirement: @ 9 rows outof 9 Search m 'l

Sequence No Subject Resource Action Environment Condition Decision | Inheritance Relation Match Result

1 = & Manager = doctor_3 | O! icalRecords = PatientA_O ecords | HealthcareActions = View Permit Originated Not Applicable
2 & Manager = doctor_3 | OldMedicz|Records = Patient8_OldMediczIRecords | HealthcareActions = View Permit Originated Not Applicable
3 & Manager = doctor_3 | OldMedicalRecords = PatientC_OldMedicalRecords | HealthcareActions = View Permit Originated Not Applicable
4 & Manager = doctor_3 i fo = PatientA_| f HealthcareActions = View Permit Originated Not Applicable
5 Any Value & Manager = doctor_3 linfo = PatientB_| HealthcareActions = View Permit Originated Not Applicable
s Ay value & Manager = doctor_3 = PatientC_f HealthcareActions = View Any Valus Permit Originated Permit

7 Vslue & Manager = doctor_3 PrivateNotes = PatientA_PrivateNotes HealthcareActions = View Deny Originated Not Applicable
8 & Manager = doctor_3 PrivateMotes = PatientB_| HealthcareActions = View Deny Originated Not Applicable
9 & Manager =doctor_3 Pri = PatientC_P H Actions = View Deny Originated Not Applicable

Fig. 8. ManagerPolicy: Match Results (PatientC_Personalinfo)

WWW.SECURITYPOLICYTOOL.COM

Policy Verification (June 13, 2018 18:06:54)(s) Summary

@ 1lrowsoutofl

Status Mame Verification Type Verification Technique Number of Policy(s) Combination Algorithm Enforcement Algorithm Policy List
Policy Verification (June 13, 2018 18:06:54) Standard Single Policy 1 Deny i Deny Biased ABAC:DoctorPolicy
Result(s) with selected verification (Policy Verification (June 13, 2018 18:06:54]) ® 2 rows out of 2 EI
Requirement Schema Subject Resource Action Environment Condition Decision Verification Result
Test Case 1 Doctor = dector_3 & Manager = doctor_3 = PatientC_ HealthcareActions = View Environmeant = Any Valus | Condition = Any Valus Permit TRUE
Test Case 1 Doctor = doctor_3 & Manager = doctor_3 PatientPersonalinfo = PatientC_Perscnalinfo HealthcareActions = View Environmant = Anv Valus | Condition = Anv Valus Permit FALSE

Policy(s) and Matching result against the selcted security requirement:

<@ lrowsoutofl

Policy Name Rule Combination Algerithm Policy Enforcement Algorithm Combined Result
ABAC : DoctorPolicy Deny-overrides Deny Biased Permit
Rule(s) and Matching result of Selected Policy against the selcted security requirement: @ 30 rows out of 30 m l'
Sequence No Subject Resource Action Environment Condition Inheritance Relation Match Result

14 ue & Doctor = doctor_2 PatientP = PatientA_ HealthcareActions = View + Originated Not Applicable
15 ; valus & Doctor = doctor_2 i = PatientB_| HealthcareActions = View Originated Not Applicable
16 / Valus & Doctor = doctor_2 = PatientC_| HealthcareActions = View Originated Not Applicable
17 s Value & Dector = doctor_2 = PatientA_Pri Action = Any Value Origi Not Applicable
18 /alu= & Dector = doctor 2 = PatientB_| HealthcareActions = View Originated Not Applicable
19 /alus & Dector = doctor 2 = PatientB_| HealthcareActions = Add Originated Not Applicable
20 ny Valus & Doctor = doctor 2 = PatientC_| Action = Anv Value Originated Not Applicable
21 ny Value & Dector = doctor_3 | OldMedicalRecords = PatientA_OldMedicalRecords | HealthcareActions = View Originated Not Applicable
22 -, Value & Doctor = doctor_3 | OldMedicalRecords = PatientB_CldMedicalRecords | HealthcareActions = View Originated Not Applicable
23 1, \alue & Doctor = doctor_3 | OldMedicalRecords = PatientC_CldMedicalRecords | HealthcareActions = View Originated Not Applicable
24 v Value & Doctor = doctor 3 i linfo = PatientA_| linf HealthcareActions = View = Any Value Originated Not Applicable
25 1y value & Doctor = doctor 3 = PatientB_| HealthcareActions = View = Any Value Originated Not Applicable
26 Ay Value & Doctor = doctor_3 = PatientC_| HealthcareActions = View Originated Not Applicable
27 ny Value & Doctor = doctor_3 Pri = PatientA_Pri Any Value = Any Value Origl Not Applicable
28 ny Value & Doctor = doctor_3 Pri = Patientd_Pri Any Value Environment = Any Value | Condition value | Deny Origi Not Applicable
29 Subject = Any Valus & Doctor = doctor_3 Pri = PatientC_Pri HealthcareActions = View | £, ironment = Any Value | Condition = Any Valus Permit Origi Permit

£ ny Value & Doctor = doctor. 3 Pri = PatientC_Pr H Actions = Add ronment = Any Value Permit Originated Not Applicable

Fig. 9. DoctorPolicy: Match Results (PatientC_PrivateNotes)

WWW.SECURITYPOLICYTOOL.COM

Policy Verification (June 13, 2018 18:06:54)(s) Summary

@ 1rowsoutof 1

Search

x|

&

Status Name Verification Type Verification Technique Number of Policy(s Combination Algorithm Enforcement Algorithm Policy List
UpToDate Policy Verification (June 13, 2018 18:06:54) | Standard Single Policy 1 Deny-overrides Deny Biased ABAC:DoctorPolicy
. " ¢ SO% OW o =
Result(s) with selected verification (Policy Verification (June 13, 2018 18:06:54)) ® 2 rows out o Search <
Requirement Schema Subject Resource Action Environment Condition Decision Verification Result
TestCase 1 Doctor = doctor_3 & Manager = doctor_3 PrivateNotes = PatientC_PrivateNotes HealthcareActions = View Permit TRUE |
TestCase 1 Doctor = doctor_3 & Manager = doctor_3 PatientP = PatientC_P: Health Actions = View Permit FALSE
Policy(s) and Matching result against the selcted security requirement: ® 1 rowsoutof 1 Search ﬂ§ tﬁl
Policy Name Rule Combination Algorithm ‘ Policy Enforcement Algorithm ‘ Combined Result
ABAC : DoctorPolicy Deny-overrides] Deny Biased ‘ Deny \
Rule(s) and Matching result of Selected Policy against the selcted security requirement: ows out of 30 Search Q-
Sequence No Subject Resource Action Environment Conditio Decision | Inheritance Relation Match Result
14 & Doctor = doctor 2 PatientPersonalinfo = PatientA_Personalinfo HealthcareActions = View | Deny Originated Not Applicable |
15 & Doctor = doctor 2 PatientPersonalinfo = PatientB_Personalinfo | HealthcareActions = View | Deny Originated Not Applicable |
16 & Doctor = doctor 2 PatientPersonalinfo = PatientC_Personalinfo HealthcareActions = View | Deny Originated Not Applicable
17 & Doctor = doctor 2 PrivateNotes = PatientA_PrivateNotes Deny Originated Not Applicable
18 & Doctor = doctor 2 PrivateNotes = PatientB_PrivateNotes HealthcareActions = View | Permit Originated Not Applicable
19 & Doctor = doctor 2 PrivateNotes = PatientB_PrivateNotes | HealthcareActions = Add | Permit Originated Not Applicable
20 & Doctor = doctor_2 PrivateNotes = PatientC_PrivateNotes | Deny Originated Not Applicable |
21 & Doctor = doctor_3 | OldMedicalRecords = PatientA_OldMedicalRecords | HealthcareActions = View | Deny Originated Not Applicable |
22 & Doctor = doctor_3 | OldMedicalRecords = PatientB_OldMedicalRecords | HealthcareActions = View | Deny Originated Not Applicable |
23 & Doctor = doctor_3 | OldMedicalRecords = PatientC_OldMedicalRecords | HealthcareActions = View | Permit Originated Not Appli |
24 & Doctor = doctor 3 PatientPersonalinfo = PatientA_Personalinfo HealthcareActions = View Deny Originated Not Applicable |
25 & Doctor = doctor 3 PatientPersonalinfo = PatientB_Personalinfo HealthcareActions = View Deny Originated Not Applicable |
26 & Doctor = doctor 3 Pa = PatientC_P HealthcareActions = View Deny Originated Deny ‘
27 & Doctor = doctor 3 PrivateNotes = PatientA_PrivateNotes | Deny Originated Not Applicable |
28 & Doctor = doctor 3 PrivateNotes = PatientB_PrivateNotes | | Deny Originated Not Applicable |
29 & Doctor = doctor 3 PrivateNotes = PatientC_PrivateNotes HealthcareActions = View | | Permit Originated Not Applicable |
30 & Doctor = doctor 3 | PrivateNotes = PatientC_PrivateNotes HealthcareActions = Add | | Permit Originated Not Applicable |

Fig. 10. DoctorPolicy: Match Results (PatientC_Personallnfo)

Now that we have pinpointed our (4) Rules related to our Rule Conflict Error we can go back and
make changes or possibly remove these rules. Depending on your organizational structure the
policy author or access control administrator would need to decide what is the most appropriate
action to take to resolve the error. There is no “right” or “wrong” solution for this, you would
need to determine what is most appropriate based on your organizational needs.

For our example, we are going to modify Rule 9 in the ManagerPolicy to Permit “Manager
= doctor_3” to View Patient C_PrivateNotes and modify Rule 26 in the DoctorPolicy to Permit
“Doctor = doctor_3” to View Patient C_Personallnfo which will in turn resolve the Rule Conflict.
For this example, we are making an exception for this individual (doctor_3) because they are
required to be able to view PatientPersonallnfo and PrivateNotes to perform their job as a
Manager and a Doctor.

ManagerPolicy: Modify (1) Rule:

(Rule No. = 9) — (Subject = Any Value & Manager = doctor_3) — (Action = View) —(Resource = PatientC_PrivateNotes)
— decision = Permit

DoctorPolicy: Modify (1) Rule:

(Rule No. = 26) — (Subject = Any Value & Doctor = doctor_3) — (Action = View) — (Resource = PatientC_Personallnfo)
— decision = Permit

9 Subjsct = ny Valuz & Manager = doctor 3 PrivateMotes = PatientC_PrivateNotes HealthcareActions = View Envircament=4ny Valus Condition=4A; Permit Originated

Fig. 11. ManagerPolicy: Modified Rule (9)

WWW.SECURITYPOLICYTOOL.COM

26

¢ value & Doctor = doctor_3

PatientPersonalinfo = PatientC_Personalinfo

| HealthcareActions = view

Permit

Criginated

Fig. 12. DoctorPolicy: Modified Rule (26)

Which then when we “Refresh” our previous Verification Results we

Contlict occurring:

no longer have a Rule

Policy Verification (June 20, 2018 12:27:37)(s) Summary @ 1 rowsoutof1 | search u; [
Status Mame Verification Type Werification Technigue Mumber of Policy(s) Combination Algorithm Enforcement Algorithm Policy List
UpToDate Policy Verification (June 20, 2018 12:27:37) Standard Single Policy 1 Deny-cverrides Deny Biased ABAC:ManagerPolicy

Result(s) with selected verification (Policy Verification (lune 20, 2018 13:37:37)) ® 2 rows outof 2 Search B &
Requirement Schema Subject Resource Action Envirenment Condition Decision Verification Result
Test Case 1 Doctor = doctor_3 & Manager = doctor_3 PrivateNotes = PatientC_PrivateMotes HealthcareActions = View Permit TRUE
TestCase 1 Doctor = doctor_3 & Manager = doctor_3 PatientPersonalinfo = PatientC_Personalinfo HealthcareActions = View Permit TRUE
Policy Verification (June 20, 2018 12:28:07](s) Summary <@ 1rowsoutofl Search ug .I_-‘
Status Mame Verification Type Verification Technique Number of Policy(s) Combination Algorithm Enforcement Algorithm Policy List
UpToDate Policy Verification (June 20, 2018 12:28:07) Standard Single Policy 1 Deny-owerrides Deny Biased ABAC:DoctorPolicy
" -
Result(s) with selected verification (Palicy Verification {lune 20, 2018 13:28:07)) search I
Requirement Schema Subject Resource Action Envirenment Condition Decision Jerification Result
Doctor = doctor_3 & Manager = doctor_3 PrivateNotes = PatientC_PrivateMotes HealthcareActions = View Permit TRUE
Doctor = doctor_3 & Manager = doctor_3 PatientPersonalinfo = PatientC_Personallnfo HealthcareActions = View Permit TRUE

Fig. 14. Updated Results: Doctor Policy (No Rule Conflict)

7 SETTING UP THE POLICIES — TEST CASE 2 (NOT PROTECTED RESOURCE)

This healthcare example contains two policies (ManagerPolicy & DoctorPolicy). The attributes in
this example have been changed slightly from previous Test Case 1. Manager’s attribute value
has been changed from “doctor_3" to “manager” and also OldMedicalRecords has gained a new
attribute value called “PatientD_OldMedicalRecords.” The Attribute/Attribute Values include in
these policies are as shown in Figure 3.

WWW.SECURITYPOLICYTOOL.COM 10

File Project Help
@Ees2pana B -X-® 0-

E;; HealthcareTestCase2 spt £

& " & &
e TR 7| s ' M-

E-®-=|0-

| search HealthcareTestCase2 spt B

Attribute @ 5rows outof 5

Type Total Attribute(s) Total Attribute Value(s)

[%'J Doctor; http://www.w3.0rg/2001/XMLSchema#string Subject 4

0

Resgurce

Subjects Action

doctor_1

@ doctor 2
2 Environment

ool

2
o]
doctor_3 Condition o

1@ Manager ; http://wanww3.org/2001/XMLSchemaistring

- manager

[Resource

EI OldMedicalRecords ; http://www.w3.0rg/2001/XNMLSchematstring Inheritance <@ 2 rows outof 2

- & PatientA_DldMedicalRecords

Type Mo of Beneficiariels)
- & PatientB_OldMedicalRecords

Subject Inheritance

SAR=1

- PatientC_OldMedicalRecords "
Resource Inheritance

- @ PatientD_OldMedicalRecords

=~ & PatientPersonalinfo ; http:/nww. w3 .org/2001/XNLSchema#string Resources

- PatientA_Personalinfo ' -

o PatientB_Personalinfo

Access Control Mode! @ 3 rows outof 3
PatientC_Personalinfo

B PrivateNotes ; http://www.w3 org/2001/XMLSchema#string Type No of Policy(s)

ABAC 2
Multilevel
Workflow

PatientA_PrivateMotes

oo

@ PatientB_PrivateMotes

- @ PatientC_PrivateMotes

1 K Action
[)-@ HealthcareActions ; hittp:/fwww.w3 org/2001/XMLSchemasistring Actions

- @ View - == i i
Security Reguirement @ Jrowsoutof3

L add
<@ Envirenment ff— No Environments Trpe Heatee

individual Security Requirement 1

=@ Condition ofe— No Conditions Combinatorial Test Suite L5

E- T Inheritance Individual Security Requirement o

£ subjectInheritance

t.. glz Resource Inheritance

Fig. 15. Test Case 2

8 MODELING YOUR PoLicY — TEST CASE 2 (NOT PROTECTED RESOURCE)

Now that we have entered our attributes we can model our two policies (ManagerPolicy &
DoctorPolicy). See the list below of the rules contained in each of these policies. You can open
a “New (blank) Project” and build these policies by entering the following rules below:

ManagerPolicy:

(Manager = manager, View, PatientA_OldMedicalRecords) — Permit
(Manager = manager, View, PatientB_OldMedicalRecords) —Permit
(Manager = manager, View, PatientC_OldMedicalRecords) —Permit
(Manager = manager, View, PatientA_Personallnfo) —Permit
(Manager = manager, View, PatientB_Personallnfo) —Permit
(Manager = manager, View, PatientC_Personallnfo) —Permit
(Manager = manager, View, PatientA_PrivateNotes) —Deny
(Manager = manager, View, PatientB_PrivateNotes) —Deny
(Manager = manager, View, PatientC_PrivateNotes) —Deny

DoctorPolicy:

(Doctor = doctor_1, View, PatientA_OldMedicalRecords) —Permit
(Doctor = doctor_1, View, PatientB_OldMedicalRecords) —Deny
(Doctor = doctor_1, View, PatientC_OldMedicalRecords) —Deny
(Doctor = doctor_1, View, PatientA_Personallnfo) —Deny

(Doctor = doctor_1, View, PatientB_Personallnfo) —Deny

(Doctor = doctor_1, View, PatientC_Personallnfo) —Deny

(Doctor = doctor_1, View, PatientA_PrivateNotes) —Permit

WWW.SECURITYPOLICYTOOL.COM

(Doctor = doctor_1, Add, PatientA_PrivateNotes) —Permit
(Doctor = doctor_1, Action: Any, PatientB_PrivateNotes) —Deny
(Doctor = doctor_1, Action: Any, PatientC_PrivateNotes) —Deny
(Doctor = doctor_2, View, PatientA_OldMedicalRecords) —Deny
(Doctor = doctor_2, View, PatientB_OldMedicalRecords) —Permit
(Doctor = doctor_2, View, PatientC_OldMedicalRecords) —Deny
(Doctor = doctor_2, View, PatientA_Personallnfo) —Deny
(Doctor = doctor_2, View, PatientB_Personallnfo) —Deny
(Doctor = doctor_2, View, PatientC_Personallnfo) —Deny
(Doctor = doctor_2, Action: Any, PatientA_PrivateNotes) —Deny
(Doctor = doctor_2, View, PatientB_PrivateNotes) —Permit
(Doctor = doctor_2, Add, PatientB_PrivateNotes) —Permit
(Doctor = doctor_2, Action: Any, PatientC_PrivateNotes) —Deny
(Doctor = doctor_3, View, PatientA_OldMedicalRecords) —Deny
(Doctor = doctor_3, View, PatientB_OldMedicalRecords) —Deny
(Doctor = doctor_3, View, PatientC_OldMedicalRecords) —Permit
(Doctor = doctor_3, View, PatientA_Personallnfo) —Deny
(Doctor = doctor_3, View, PatientB_Personallnfo) —Deny
(Doctor = doctor_3, View, PatientC_Personallnfo) —Deny
(Doctor = doctor_3, Action: Any, PatientA_PrivateNotes) —Deny
(Doctor = doctor_3, Action: Any, PatientB_PrivateNotes) —Deny
(Doctor = doctor_3, View, PatientC_PrivateNotes) —Permit
(Doctor = doctor_3, Add, PatientC_PrivateNotes) —Permit

11

After entering the rules above your modeled policies should look like the screenshots below. If
you did not create your own Project File, you can simply open Security Policy Tool — Project
File: HealthcareTestCase2 and these policies will have been already created for you.

ManagerPolicy Policy(s) Summary @ 1rowsoutof 1 Search 0 &
Model Policy Name Rule Combination Algorithm Policy Enforcement Algorithm Nao. of Rule(s) Time Created Last Modified
ABAC IMznagerPolicy Deny-overrides Deny Biased El June 13, 2018 12:25:42 June 13, 2018 12:29:42
Rule {5) defined with selected policy (ManagerPolicy): @ G rows out of 9 Search | ug -]
Ssguence No Subject Resource Action Environment Condition Decision Inheritance Relation
1 Manager = manager OldMedicalRecords = PatientA_OldMedicalRecords HealthcareActions = View Permit Originated
2 Manager = manager OldMedicalRecords = PatientB_OldMedicalRecords HealthcareActions = View Permit Originated
3 Mznager = managsr OldMedicalRecords = PatientC_OldMedicalRecords HealthcareActions = View Permit Originated
4 Mznager = managsr PatientPersonalinfo = Patients_Personalinfo Healthcarsactions = View Permit Originated
5 Mznager = managsr FatientPersonalinfo = PatientB_Personalinfo HealthcareActions = View Permit Originated
6 IManager = manager PatientPersonalinfo = PatientC_Personalinfo HealthcareActions = View Permit Originated
7 Manager = manager PrivateMotes = PatientA_PrivateNotes HealthcareActions = View Deny Originated
3 Manager = manager PrivateMotes = PatientB_Privatehotes HealthcareActions = View Deny Originated
9 Manager = manager PrivateMotes = PatientC_PrivateNotes HealthcareActions = View Deny Originated

Fig. 16. ManagerPolicy

WWW.SECURITYPOLICYTOOL.COM 12

DoctorPolicy Policyls) Summary @ 1rowsoutof 1 | search 0 &
Mode! Policy Name Rule Combination Algorithm Policy Enforcement Algorithm No. of Rule(s) Time Created Last Modified
ABAC DoctorPolicy Deny-overrides Deny Biased 30 June 13, 2018 12:33:14 June 13, 2018 12:33:14

Rule (5) defined with selected policy (DoctorPolicy): @ 30 rows out of 30 Search | ﬂg (=]

Sequence No Subject Resource Action Environment Condition Decision Inheritance Relation
1 Doctor =doctor_1 OldMedicalRecords = Patientd_OldMedicalRecords HealthcareActions = View B Permit Originated
2 Doctor =doctor_1 OldMedicalRecords = PatientB_OldMedicalRecords HealthcareActions = View En Deny Originated
3 Doctor =doctor_1 OldMedicalRecords = PatientC_DldMedicalRecords HealthcareActions = View En Deny Originated
4 Doctor = doctor_1 PatientPersonalinfo = Patient_Personalinfo HealthcareActions = View En Deny Originated
5 Doctor = doctor_1 PatientPersonalinfo = PatientB_Personalinfo HealthcareActions = View En Deny Originated
6 Doctor = doctor_1 PatientPersonalinfo = PatientC_Personalinfo HealthcareActions = View En Deny Originated
7 Doctor =doctor_1 PrivateNotes = PatientA_PrivateNotes HealthcareActions = View En Permit Originated
: Doctor =doctor_1 PrivateMotes = Patientd_PrivatzMotes HealthcarsActions = Add En Permit Originated
9 Doctor =doctor_1 PriveteNotes = PatientB_PrivateNotes E Deny Originated
10 Doctor =doctor_1 PriveteNotes = PatientC_PrivateNotes alue En Deny Originated
11 Doctor = doctor_2 OldMedicalRecords = Patients_DldMedicalRecords HealthcareActions = View En Deny Originated
12 Doctor = doctor_2 OldMedicalRecords = PatientB_OldiedicalRecords HealthcareActions = View En Permit Originated
13 Doctor = doctor_2 OldMedicalRecords = PatientC_OldMedicalRecords HealthcareActions = View Deny Originated
14 Doctor=doctor_2 PatientPersonalinfo = PatientA_Personalinfo HealthcareActions = View Deny Originated
is Doctor = doctor_2 PatientPersonalinfo = PatientB_Perzonalinfo Healthcareactions = View En Deny Originated
16 Doctor =doctor_2 PatientPersonalinfo = PatientC_Personalinfo HealthcareActions = View En Deny Originated
17 Doctor = doctor_2 PrivateNotes = PatientA_PrivateNotes Action = Any Va E Deny Originated
18 Doctor =doctor_2 PrivateNotes = PatientB_PrivateNotes HealthcareActions En Permit Originated
19 Doctor = doctor_2 PrivateNote: atientB_PrivateNotes HealthcareActions = Add En Permit Originated
20 Doctor = dactor_2 PrivateNotes = PatientC_PrivateNotes £n Deny Originated
21 Doctor = doctor_3 OldMedicalRecords = Patientd_DldMedicalRecords = Deny Originated
22 Doctor=doctor_3 0OldMedicalRecords = PatientB_OldMedicalRecords HealthcareActions = View En Deny Originated
23 Doctor = doctor_3 OldMedicalRecords = PatientC_OldMedicalRecords Healthcareactions = View En Permit Originated
24 Doctor =doctor_3 PatientPersonalinfo = Patients_Personalinfo HealthcareActions = View En Deny Originated
25 Doctor = doctor_3 PatientPersonalinfo = PatientB_Personalinfo HealthcareActions = Wiew E Deny Originated
26 Doctor = doctor_3 PatientPersonalinfo = PatientC_Personalinfo HealthcareActions = View En Deny Originated
a7 Doctor = doctor_5 PrivateNotes = PatientA_PrivateNotes £n Deny Originated
28 Doctor = doctor_3 PrivateNotes = PatientB_PrivateNotes e Deny Originated
29 Doctor = doctor_3 PrivateMNotes = PatientC_PrivateNotes HealthcareActions En Permit Originated
30 Doctor = doctor_3 PrivateMotes = PatientC_PrivateMotes HealthcarsActions = Add En Permit Originated

Fig. 17. DoctorPolicy

9 INDIVIDUAL SECURITY REQUIREMENT - TEST CASE 2 (NOT PROTECTED RE-
SOURCE)

The final step before analyzing these policies for errors is to create individual security require-
ments to use for testing. If you are building a “New (blank) Project” on your own you will enter
the following security requirement below:

Individual Security Requirement:
(Manager = manager) & (Action = View) & (OldMedicalRecords = PatientD_OldMedicalRecords) — decision = Permit

After entering the rule above your individual security requirement should look like the screen-
shot below. If you did not create your own Project File you can simply open Security Policy
Tool — Project File: HealthcareTestCase2 and this requirement will have been already created for
you.

Test Case 2(s) Summary ® 1rowsoutofl | search xR
Control Security Requirement Requirement Schema Mo, of Security Requirementis)
Individual Test Case 2 1
Security Requirement (5] defined under selected Requirement Schema (Test Case 2): @ 1 rows out of 1 Search ﬂﬁ |.','=i|
Sequence No Subject Resource Action Environment Condition
1 Manager = manager 0OldMedicalRecords = PatientD_0OldMedicalRecords HealthcareActions = View Enviro A = =A 3l

Fig. 18. Individual Security Requirement

WWW.SECURITYPOLICYTOOL.COM 13

10 PoLicy VERIFICATION/ANALYZING RESULTS - TEST CASE 2 (NOT PROTECTED
RESOURCE)

Now that we are ready to test our policies let’s discuss the error we will be looking at in this
second example. When policies are designed there is potential for a “Not Protected Resource”
error being created. A Not Protected Resource error occurs when a resource is created but without
protection from any rules.

For example, when the policy author was designing the logic for these healthcare policies; the
author created a resource “PatientD_OldMedicalRecords” with no protections. This means there
are not currently any rules defined that are giving a decision for an access request to the resource.
This Not Protected Resource error is not caused by any specific rules in either of our policies; it
is caused due to a lack of rules created to cover this resource.

Next, we will run one “Combined Policy” Verification to reveal the Not Protected Resource error
that is present in our policies. To do this, we will select Test Case 2 (security requirement) and
ManagerPolicy & DoctorPolicy as a Combined Policy Verification and analyze our verification
result. Again, this will have already been done for you if you open Project File: HealthcareTest-
Case2.

. & . 3 BT . T Ok ows out of 1 =
Policy Verfication (June 18, 2018 15:04:10](s) Summary ® 1 rows out of 1 Search =l

Status MName Verification Type Verification Technique Number of Policy(s) Combination Algorithm Enforcement Algorithm Policy List

UpToDate Policy Verification (June 18, 2018 15:04:10) Standard Combined Policy 2 Deny-overrides Deny Biased ABAC:ManagerPolicy, ABAC:DoctorPolicy
Result(s) with selected verification [Policy Verification (June 18, 2018 15:04:10}) @ 1 rows outof 1 Search ui 'E'
Requirement Schema Subject Resource Action Environment Condition Decision Verification Result
Test Case 2 Ivlanager = manager OldMedicalRecords = PatientD_OldMedicalRecords HealthcareActions = View Environment - gt Permit FALSE

Fig. 19. Combined Policy x Test Case 2

By clicking on the Verification Result, we can analyze deeper the reasoning for the “False”
result we have received. Here is where we will notice we have not created Rules attached to
Resource = PatientD_OldMedicalRecords. We see this by noticing that every “Match Result” is
“Not Applicable” whereas if there were Rules protecting this resource we would have seen at
least one Rule with a (Permit or Deny) Match Result.

WWW.SECURITYPOLICYTOOL.COM

14

Result{s) with selected verification [Policy Verification [June 18, 2018 15:04:10))

@ 1rowsoutofl

@

Requirement Schema

Subject Resource

Action

Environment

Condition

Decision

Verification Result

Test Case 2

IManager = manager

OldmedicalRecords = PatientD_OldMedicalRecords

HealthcareActions = View

Environmant=4ny Value

Condition = Any Valus

Permit

FALSE

Policy(s) and Matching result against the selcted security requirement:

<@ 2 rows outof 2

Search ‘ ﬂg ‘

Sequence Mo Folicy Name Rule Combination Algorithm Policy Enforcement Algorithm Combined Result
1 ABAC : ManagerPolicy Deny-overrides Deny Bigsed Deny
z ABAC : DoctorPolicy Deny-overrides Deny Bizsed Deny
Rule(s) and Matching result of Selected Policy against the selcted security requirement: @@ 9 rows out of 9 Search ‘ Hi ‘
e —|
Sequence No Subject Resource Action Environment Condition Decision Inheritance Relation Match Result
1 Manager = manager OldMedicalRecords = Patienta_OldMedicalRecords HealthcareActions = View Permit Originzted Not Applicable
2 Manager = manager OldMedicalRecords = PatientB_OldMedicalRecords HealthcareActions = View Permit Originated Not Applicable
3 Manager = manager OldMedicalRecords = PatientC_OldMedicalRecords HealthcareActions = View Permit Originated Not Applicable
4 Manager = manager PatientPersonalinfo = Patient4_Personalinfo HealthcareActions = View Permit Originated Not Applicable
5 Manager = manager PatientPersonalinfo = PatientB_Personalinfo HealthcareActions = View Permit Originated Not Applicable
6 Manager = manager PatientPersonalinfo = PatientC_Personalinfo HealthcareActions = View Permit Originated Not Applicable
7 Manager = manager PrivateMotes = PatientA_PrivateNotes HealthcareActions = View Deny Originated Not Applicable
8 Manager = manager PrivateMotes = PatientB_PrivateMotes HealthcareActions = View Deny Originated Not Applicable
9 Manager = manager PrivateMNotes = PatientC_PrivateNotes HealthcareActions = View Deny Originated Not Applicable
Result(s] with selected verification (Policy Verification (june 18, 2018 15:04:10)) & 1rowsoutof 1 Search J I
Reguirement Schema Sublject Resource Action Environment Condition Decision verification Result
Test Case 2 Manager = manager ald = PatientD_Old! d. = Vigw g aliie Permit EALSE
Policy(s] and Matching result against the selcted security requirement: & 2 rows outof 2 Search | m ‘

Segquence No i Policy Name i Rule Combination Algorithm Policy Enforcement Algorithm Combined Result
1 | ABAC R iy | Deny-overrides Deny Biased Deny
2 | ABAC : DoctorPolicy | Deny-overrides | Deny Bissad Deny
Rule{s) and Matching result of Selected Policy against the selcted security requirement: & 30 rows outof 30 Search] m I'
Sequence No Subject Resource Action Environment Condition Decision Inheritance Relation] Match Result
1 | Doctor= dostort | Olamedical rds = Patients_OldMedicalRecards | Healthcareactions = View arvg Value n=anyvalye | Permit Orignated | Not Applicable
2 | Doctor = doctor_1 OidhedicalRecords = PatientB_OldMedicalRecords HealthcareActions = View Originated Mot Applicable
3 Doctor = doctor_1 OldMedicalRecords = PatientC_OldMedicalRecords HealthcareActions = View Originated Not Applicable
4 Dector = doctor_1 ier tinfa = PatientA_t linf I =View Originated Not Applicable |
B | Doctor=doctor 1 F = Patients | Healthcarzactions = View o |_Not Applicable
] Doctor = doctor_1 Patier = PatientC_Personalinfo HealthcareActions = View Originated |_Not Applicable
7 Doctor = doctor_1 = Patients_Pr HealthcareActions = View Originated Not Applicable
=3 Doctor = doctor_1 i = Patient: Health i =add
- = s s ™ A 8 ey = ’ .
10 Doctor = doctor_1 = PatientC_| Originated
11 Doctor = doctor_2 Oldhtedical = patientd_OldMedi d b Originated
12 Doctor = docior_2 OldMediczlRecords = PatientB_OldMedicalRecords Healthcarsdctions = View Qriginated Not Applicable
13 | Doctor=doctor_ 2 | OldMedicalRecords = PatientC_OldMedicalRecords | Healthcarsictions = View Originated Not Applicable
14 Doctor = doctor_2 PatientPersonalinfo = PatientA_Personalinfo HealthcareActions = View Originated | Not Applicable
15 | Doctor=doctor2 | PatientPersonalinfo = Petientd Personalinfo | Healthcareactions = View _Orgnated | Not Applicable _
18 Doctor = doctor_2 PatientE = PatientC_| Healthcarsdctions = View Originated | Mot Applicable
17 Doctor = doctor_2 = PatientA_Pri Artio! y VElus Originated | Not Applicable |
13 | Doctor =doctor_2 = PatientB_Pri HealthcareActions = View Qriginated . Mot Applicable
19 | Docror=doctor_2 B ’ = patientd_Pr Heaithcaredctions = Add Qi d | Not licabl
20 Doctor = doctor_2 = PatientC_Pri Action = dny Value Orig) |_Not Applicable
21 Doctor = doctor_3 OldMedicalRecords = Patients_OldMedicalRecords HealthcareActions = View Originated 1
22 Doctor = doctor_3 OldMedical ds = PatientB_O d It View O d
23 | Doctor=doctor3 | OldMedicalRecords = PatientC_OldMedicalfiecards | Healthcaredctions = View “orignated |
24 Doctor = doctor_3 PatientPersonalinfo = Patientd_Personalinfo HealthcarsActions = View Originated | Not Applicable
s | Doctor = doctor_5 PatientPersonalinfo = PatientB_Personalinfo HealthcareActions = View Originated __Mot Applicable
26 Doctor = doctor_3 '3t finfo = PatientC_Personalin HealthcareActions = View o g Not Applicable
27 Doctor = doctor_3 Pri = Patientd_Pri slue Originated Not Applicable
28 Doctor = doctor_3 i = PatientB_Pri alu= Originated
29 Doctor = doctor_3 i = PatieniC. =View Qriginated
5 = PatientC_Pr ot HeaithcareActions = Add Originated

Fig. 21. Doctor Policy: Match Results

WWW.SECURITYPOLICYTOOL.COM 15

11 RESOLVING THIS ERROR - TEST CASE 2 (NOT PROTECTED RESOURCE)

To eliminate a Not Protected Resource vulnerability the policy author would need to define a
specific rule for the unprotected resource (PatientD_OldMedicalRecords) and then test again to
verify the intended access decision is being made based on the new rule’s design.

For example, if we're to add this rule below to the ManagerPolicy. ..

ManagerPolicy: Add (1) New Rule:

(Rule No. = 10) — (Manager = manager) — (Action = View) — (Resource = PatientD_OldMedicalRecords) — decision
= Permit

10 Mznager = manager OldMedicalRecords = PatientD_OldMedicalRecords HealthcareActions = View E rent= N condition =4 alus Permit Qriginated

Fig. 22. Manager Policy: New Rule (10)

Then retest using the same Policy Verification selections as last time we will get the same False
Verification result due to our Combination and Enforcement Algorithm selections. However, we
can see in the Match Results that we have provided a rule for the system to evaluate for a
Manager accessing this Resource.

Sequence No Subject Resource Action Environment Condition Decision Inheritance Relation Match Result

: | Manager = manager OldMedicalRecords = Patienta_OldMedicalRecords HealthcareActions = View nent = e Canditian y Value Permit Originated Not Applicable

2 Manager = manager OldMedicalRecords = PatientB_OldMedicalRecords HealthcareActions Y Permit Originated Not Applicable

3 Manager = manager OldMedicalRecords = PatientC_OldMedicalRecords HealthcareActions Permit Originatad N-u_t Applicable

4 Manager = manager PatientPersonalinfo = Patients_Personalinfo HealthcareActions Permit Originated Not Agglicabje_
5 Manager = manager PatientPersonalinfo = PatientB_Personalinfa HealthcareActions Permit Qriginated Not Applicable

6 Manager = manager PatientPersonalinfo = PatientC_Personalinfo HealthcareActions = View 3 slue - Permit Originated Not Applicable

7 Manager = manager PrivateMotes = PatientA_PrivateNotes HealthcareActions = View £ t alu d n u Deny Originated Not Applicable

8 Manager = manager PrivateMotes = PatientB_PrivateNotes HealthcareActions = View " - ondition vy Valus Deny Originated Not Applicable |
9 Manager = manager PrivateMotes = PatientC_PrivateNotes HealthcareActions ev Deny Originated Not Applicable
10 Manager=manager OldMedicalRecords = PatientD_OldMedicalRecords HealthcarsActions = View Permit Originated Permit

Fig. 23. Updated Policy: Resource Now Protected

12 SETTING UP THE POLICIES — TEST CASE 3 (UNDECIDED RULE)

This healthcare example contains two policies (ManagerPolicy & DoctorPolicy). The attributes in
this example have been changed slightly from previous Test Case 1 and Test Case 2. OldMedi-
calRecords no longer has attribute value “PatientD_OldMedicalRecords,” and Private Notes has
gained a new attribute value “PatientD_PrivateNotes.” The Attribute/Attribute Values included
in these policies are as shown in Figure 4.

WWW.SECURITYPOLICYTOOL.COM

16

File Project Help
[B R & .= . . € R - P A -0 . @3 .EFE . IE -
= a8 ARA&AE-X -® -9 -4 -&-4AE-4A-E-B-20
'gj HealthcareTestCazed.spt £
search HealthcareTestCaseS.spt Pr
A
Q} HealthcareTestCase3.5pt
e A - @ 5 rows out of 5
-) Attribute AR
g &
=H ol SUbject Type Total Attribute(s) Total Attribute Value(s)
@ Doctor ; http://www.w3.0rg/2001/XMLSchemadstring Subject 2 2
i doctor_1 . Resource 3 10
Subjects Action 1 2
doctor_2
N Enviranment) 0
% doctor_3 Condition 0 o
Bl @ Manager ; http://www.w3.0rg/2001/XMLSchema#string
L. @ manager
[&] resourcs
Bl & OldMedicalRecords ; http://www.w3.0rg/2001/XMLSchema#string Inheritance @@ 2 rows out of 2
PatientA_OldMedicalRecords
Type No of Beneficiarie(s)
PatientB_CldMedicalRecords
Subject Inheritance o
PatientC_OldMedicalRecords eoe Tnherinnee
- @ PatientPersonalinfo ; http://www w3 org/2001/XMLSchema#string
PatientA_Personalinfo Resources
PatientB_Personalinfo
it el Access Control Model @ 3rowsoutof 3
B @ PrivateNotes ; http://www.w3.0rg/2001/XMLSchema#string
Patientd_PrivateNotes Tvps He of Policy(s)
PatientB_PrivateNotes L 2
Multilevel 0
PatientC_PrivateNotas Workflow a
PatientD_PrivateNotes
= #& Action
[} @ HealthcareActions ; http:/fwww.w3.0rg/2001/XNMLSchemai#string Actions
Vie P— § o o
= Security Requirement @ 3 rows out of
L@ Add
B EnronmEnT - Type No of Pol
et = No Environments
& < l S Individual Security Requirement 1
_! Condition No Conditions Combinatorial Test Suite 0
= Inheritance Individual Security Requirement 0
i Subject Inheritance
i Resource Inheritance

Fig. 24. Test Case 3

13 MODELING YOUR PoLicYy — TEST CASE 3 (UNDECIDED RULE)

Now that we have entered our attributes we can model our two policies (ManagerPolicy &
DoctorPolicy). See the list below of the rules contained in each of these policies. You can open
a “New (blank) Project” and build these policies by entering the following rules below:

ManagerPolicy:

(Manager = manager, View, PatientA_OldMedicalRecords) — Permit

(Manager = manager, View, PatientB_OldMedicalRecords) —Permit
(Manager = manager, View, PatientC_OldMedicalRecords) —Permit
(Manager = manager, View, PatientA_Personallnfo) —Permit
(Manager = manager, View, PatientB_Personallnfo) —Permit
(Manager = manager, View, PatientC_Personallnfo) —Permit
(Manager = manager, View, PatientA_PrivateNotes) —Deny
(Manager = manager, View, PatientB_PrivateNotes) —Deny
(Manager = manager, View, PatientC_PrivateNotes) —Deny
(Manager = manager, View, PatientD_PrivateNotes) —Deny

DoctorPolicy:

(Doctor = doctor_1, View, PatientA_OldMedicalRecords) —Permit
(Doctor = doctor_1, View, PatientB_OldMedicalRecords) —Deny
(Doctor = doctor_1, View, PatientC_OldMedicalRecords) —Deny
(Doctor = doctor_1, View, PatientA_Personallnfo) —Deny

WWW.SECURITYPOLICYTOOL.COM 17

(Doctor = doctor_1, View, PatientB_Personallnfo) —Deny
(Doctor = doctor_1, View, PatientC_Personallnfo) —Deny
(Doctor = doctor_1, View, PatientA_PrivateNotes) —Permit
(Doctor = doctor_1, Add, PatientA_PrivateNotes) —Permit
(Doctor = doctor_1, Action: Any, PatientB_PrivateNotes) —Deny
(Doctor = doctor_1, Action: Any, PatientC_PrivateNotes) —Deny
(Doctor = doctor_2, View, PatientA_OldMedicalRecords) —Deny
(Doctor = doctor_2, View, PatientB_OldMedicalRecords) —Permit
(Doctor = doctor_2, View, PatientC_OldMedicalRecords) —Deny
(Doctor = doctor_2, View, PatientA_Personallnfo) —Deny
(Doctor = doctor_2, View, PatientB_Personallnfo) —Deny
(Doctor = doctor_2, View, PatientC_Personallnfo) —Deny
(Doctor = doctor_2, Action: Any, PatientA_PrivateNotes) —Deny
(Doctor = doctor_2, View, PatientB_PrivateNotes) —Permit
(Doctor = doctor_2, Add, PatientB_PrivateNotes) —Permit
(Doctor = doctor_2, Action: Any, PatientC_PrivateNotes) —Deny
(Doctor = doctor_3, View, PatientA_OldMedicalRecords) —Deny
(Doctor = doctor_3, View, PatientB_OldMedicalRecords) —Deny
(Doctor = doctor_3, View, PatientC_OldMedicalRecords) —Permit
(Doctor = doctor_3, View, PatientA_Personallnfo) —Deny
(Doctor = doctor_3, View, PatientB_Personallnfo) —Deny
(Doctor = doctor_3, View, PatientC_Personallnfo) —Deny
(Doctor = doctor_3, Action: Any, PatientA_PrivateNotes) —Deny
(Doctor = doctor_3, Action: Any, PatientB_PrivateNotes) —Deny
(Doctor = doctor_3, View, PatientC_PrivateNotes) —Permit
(Doctor = doctor_3, Add, PatientC_PrivateNotes) —Permit
(Doctor = doctor_3, View, PatientD_PrivateNotes) —Permit
(Doctor = doctor_3, Add, PatientD_PrivateNotes) —Permit

After entering the rules above your modeled policies should look like the screenshots below. If
you did not create your own Project File, you can simply open Security Policy Tool — Project
File: HealthcareTestCase3 and these policies will have been already created for you.

ManagerBalicy Palicy(s) Summary @ 1 rows out of 1 Search 0w
Model Policy Name Rule Combination Algorithm Policy Enforcement Algorithm Mo. of Rulg(s) Time Created Last Modified
ABAC IManagerPolicy Deny-overrides Deny Biased 10 June 13, 2018 15:47:46 June 13, 2018 15:47:46

Rule (s) defined with selected policy (ManagerPolicy): @ 10 rows out of 10 search a; (=]
Sequence No Subject Resource Action Environment Condition Decision Inheritance Relation
1 Mznager = managsr OldMedicalRecords = Patients_0OldMedicz|Records Healthcarsactions = View Permit Originated
2 Mznager = managsr OldMedicalRecords = PatientB_0ldMedicalRecords HealthcareActions = View Permit Originated
3 IManager = manager OldMedicalRecords = PatientC_OldMedicalRecords HealthcareActions = View Permit Originated
4 Manager = manager PrivateMotes = PatientA_PrivateNotes HealthcareAction Deny Originated
5 Manager = manager PrivateMotes = PatientB_Privatehotes HealthcareActions = Deny Originated
5 Manager = manager PrivateMotes = PatientC_PrivateNotes HealthcareActions = View Deny Originated
7 Manager = manager PatientPersonalinfo = PatientA_Persanalinfo Healthcare, ' Permit Originated
3 Mznager = managsr PatientPersonalinfo = PatientB_Personalinfo HealthcareAction iew Permit Originated
g Mznager = managsr PatientPersonalinfo = PatientC_Personalinfo Healthcarsactions = View Permit Originated
10 Mznager = manager PrivateNotes = PatientD_PrivateNotes HealthcareActions = View Deny Originated

Fig. 25. ManagerPolicy

WWW.SECURITYPOLICYTOOL.COM

DoctorPolicy Policy(s) Summary B 1rows outofl Search <ER
Madel Policy Name Rule Combination Algorithm Policy Enforcement Algorithm Time Created Last Modified
ABAC DoctarPelicy Deny-overrides Deny Biasad 32 June 13, 2018 16:00:58 June 13. 2018 16:00:58

Rule () defined with selected palicy (DoctorPolicy: W 32 rows out of 32 search b

Sequence No Rescurce Action Environment Cendition Decision nheritance Relation
1 OldhMedicalRecords = PatientA_OldMadicalRecords Heal A Permit Originateg
] " Doctor=doctor 1| OldMedicalRecords = PatientB_OldMedicalRecords | HealthcareAction N T Ty Deny Originated
3 Doctor =doctor_1 al dical 35 = PatientC_Old icalReconds Healtk 2 =\igw B Deny Originated
3 Doctar = doctar_1 PatientPersonzlinfo = Patenta_Personalinio Healthcareactions = View Deny Originated
5 Doctor =doctor_1 PatientPersonslinfo = PatientB_Personalinfo HealthcareActions = View Deny Originated

& ~ Doctor =doctor 1 ntPerson = PatientC_Persanalinfo Healthcar Deny | Originated.
7 Daoctor =doctor_1 PrivateMotes = PatientA_Pri HealthcareActions = View Permit | Orginates
-] Coctor =doctor_1 Pri = PatientA_Pri Healthcareactions = Add Permit | Originated
s “Doctor =doctor 1 PrivateMotes = PatientB_Privateli . ApHCA=ARy Tl Deny Originated
10 Doctor =doctor_1 = PatientC_Pri Ar alue Deny Originatad
11 Doctor =doctor_2 OldMedicalRecords = Patientd_OldMedicalRecords Healthcareactions = View E Deny Originated
1z Doctor =doctor_2 OldMedicalRecords = PatientB_OldMedicalRecords HealthcareActions = View Permit Originated
13 Doctor =doctor_2 OldMedicalRecords = PatientC_DldMedicalRecords HealthcareActions = View 2 " A Deny Originated
14 Doctor = docter_2 FatientPersonalinfo = PatientA_Personalinfo HealthcareAztions = View | | Deny Orginatea
15 Doctor =doctor_2 PatientPersonalinfo = PatientB_Personalinfo HealthcareActions =View | cruironment = Any value | Comdition = Deny Originated
16 Doctor =doctor_2 PatientPersonalinfo = Pat ent‘C_I.?ersonal"nfé HealthcareActions = View & A = = Deny | dr:glnanec
&1 Dackor = doctor 2 hatafiole = pimenth BTNt Action = Any Value 2 penve | Lngiicen
18 Doctor =dector_2 1! = PatlentB_Pr P HealthcareActions = View E =2 Permit | Driginated
19 Doctor =doctor_2 = PatientB_Pri HealthcareActions = Add & Permit | Originated
20 Doctor = doctor_2 s = PavientC_Pri Acsiori = Ay Valus 4 . Deny | Originated
71 Doctor = docter_3 OlahedicalRecords = PatientA_OldMegicalRecards HealthcareActions = View " e Deny Originated
22 Doctor =doctor_3 0l = PatientB_O icalRecords t - = Vigw E Deny Driginatad
23 Doctor = docter_3 Olohed calRecords = PatientC_OldMedicalRecards HezlthcareActions = View . v A Permit Orginates
24 Doctor =doctor_3 PatientPersonslinfo = PatientA_Personalinfo HealthcareActions = View 5 Deny Originated
25 | Doctor=docter_3 PatientPersonalinfo = PatentB_Personalinfo Healthcareactions = View . A Deny Originated.
26 Doctor =doctor_3 PatientPersonalinfo = PatientC_Persanalinfo HealthcareActions = View Deny Originated
7 Doctor =doctor_3 i 5 = PatientA_Pri - " Dany Originated
28 | poctor=gecters | Privatetiotes = Patients_P Action =Any o “Deny Onginatea
29 Doctor =doctor_3 = PatientC_| Health ions = View Parmit Originated
3o P Healthcareactions = Add Permit Originated
31 F Healtheareaction Permit
) ER i HealtcarsAction i Permit

Fig. 26. DoctorPolicy

14

the following security requirement below:

Individual Securi

ty Requirement:

INDIVIDUAL SECURITY REQUIREMENTS - TEST CASE

3 (UNDECIDED RULE)

The final step before analyzing these policies for errors is to create individual security require-
ments to use for testing. If you are building a “New (blank) Project” on your own you will enter

(Doctor = doctor_1) & (Action = View) & (PrivateNotes = PatientD_PrivateNotes) —decision = Permit

After entering the rule above your individual security requirement should look like the screen-
shot below. If you did not create your own Project File you can simply open Security Policy
Tool — Project File: HealthcareTestCase3 and this requirement will have been already created for

you.

Test Case 3(s) Summary

<@ 1 rows outof 1

[
\Search

| @ W

Access Control Security Requirement

Requirement Schema

Mo. of Security Requirementis)

Individual Test Case 3 1
® Lrows outer [@
Security Requirement (s) defined under selected Requirement Schema (Test Case 3): lrowsoutorl | Search |
Ssguence No Subject Resource Action Condition Decision
1 Doctor = doctor_1 PrivateNotes = PatientD_PrivateNotes HealthcareActions = View Enviran i S = any Value Permit

Fig. 27. Individual Security Requirement

WWW.SECURITYPOLICYTOOL.COM 19

15 PoLICY VERIFICATION/ANALYZING RESULTS - TEST CASE 3 (UNDECIDED RULE)

Now that we are ready to test our policies let’s discuss the error we will be looking at in this
third example. When policies are designed there is potential for an “Undecided Rule” error being
created. An Undecided Rule error occurs when your policy contains rules that are not entirely
defined or missing a step.

For example, when the policy author was designing the logic for these healthcare policies; the au-
thor created rules for Doctor = doctor3 and Manager = manager to access “PatientD_PrivateNotes”
but did not define access rules for Doctor = doctorl and Doctor = doctor2. In this situation, if
doctorl or doctor2 were to attempt to take action on “PatientD_PrivateNotes,” the system would
be forced to make a default decision instead of a defined decision. This may create a security
vulnerability due to your system’s default evaluation decision being different than what you
previously intended. Similar to the “Not Protected Resource” example previously, this error is
caused due to the author missing rules. It is not caused due to flawed interpretation of existing
rules contained in either of our policies as was the case in Test Case 1 (Rule Conflict).

Next, we will run one “Combined Policy” Verification to reveal the Undecided Rule error that
is present in our policies. To do this, we will select Test Case 3 (security requirement) and Man-
agerPolicy & DoctorPolicy as a Combined Policy Verification and analyze our verification result.
Again, this will have already been done for you if you open Project File: HealthcareTestCase3.

. & . o oo q 2oz = owsoutof 1 R
Policy Verfication [June 13, 2018 16:17:33)(s) Summary ® 1 rows out of 1 search s

Status MName Verification Type Verification Technique Number of Policy(s) Combination Algorithm Enforcement Algorithm Policy List

UpToDate Policy Verification (June 13, 2018 16:17:33) Standard Combined Policy 2 Deny-overrides Deny Biased ABAC:ManagerPolicy, ABAC:DoctorPolicy

s i o -
Result(s) with selected verification (Policy Verification (June 13, 2018 16:17:33)) @ Lrowsoutof L Search ui L]

Subject Resource Action Environment

Test Case 3 Doctor = doctor_1 PrivateMotes = PatientD_PrivateNotes HealthcareActions = View E s 2 " Permit FALSE

Fig. 28. Combined Policy x Test Case 3

Like we did in the “Not Protected Resource” example, by clicking on the Verification Result
we can analyze deeper the reasoning for the “False” result we have received. Here is where
we would notice we have not created Rules that are attached to Subject = doctor_ 1 taking
action on Resource = PatientD_PrivateNotes. We can see this by noticing that every “Match
Result” is “Not Applicable” whereas if there were Rules existing for doctor_1 and Resource =
PatientD_PrivateNotes we would have at least see one Rule with a (Permit or Deny) Match
Result.

WWW.SECURITYPOLICYTOOL.COM

20

Result{s) with selected verification [Policy Verification [June 13, 2018 16:17:33))

@ lrowsoutofl

Reguirement Schema Subject Resource Action Environment Condition Decision Verification Result
Test Case 3 Doctor = doctor_1 Privatehotes = PatientD_PrivateMNotes HealthcareActions = Yiew Enwiront Any Valie Permit FALSE
—
Policy(s) and Matching result against the selcted security requirement <@ 3 rows out of 3 search ‘ <]

Seguence Mo Policy Name Rule Combination Algorithm Policy Enforcement Algarithm Combined Result
i ABAC : ManagerPolicy Deny-overrides Deny Biased Deny
z ABAC : DoctorPolicy Deny-gverrides Deny Bigsed Deny
Rule(s) and Matching result of Selected Policy against the selcted security requirement: <@ 10 rows out of 10 Search ‘ ﬁi i
Sequence No Subject Resource Action Environment Condition Decision Inheritance Relation Mztch Result
1 IManager = manager OldWedicalRecords = PatientA_OldMedicalRecords HealthcareActions = View ion = Any Vall Permit Originated Not Applicable
2 Manager = manager OldMedicalRecords = PatientB_OldMedicalRecords HealthcareActions = View Permit Originated Not Applicable
3 Ianager = manager OldMedicalRecords = PatientC_0OldMedicalRecords HealthcareActions = View Permit Originated Not Applicable
4 Manzager = manager PrivateMotes = Patientd_PrivateNotes HealthcarsActions = View Deny Originated Not Applicable
5 Manager = manager PrivateMotes = PatientB_PrivateNotes HealthcarsActions = View Deny Originated Not Applicable
(1 Manager = manager PrivateMNotes = PatientC_PrivateNotes HealthcareActions = View Deny Originated Not Applicable
7 Manager = manager PatientPersonalinfo = PatientA_Personalinfo HealthcareActions = View Permit Originated Not Applicable
8 Manager = manager PatientPersonalinfo = PatientB_Personalinfo HealthcareActions = View Permit Originated Not Applicable
9 IVanager = manager PatientPersonalinfo = PatientC_Personalinfo HealthcareActions = View Permit Originated Not Applicable
10 Manager = manager PrivateMotes = PatientD_PrivateNotes HealthcareActions = View Deny Originated Not Applicable
Fig. 29. Manager Policy: Match Results
Result(s] with selected verification (Policy Verification (fune 13, 2018 16:17:33)) @ 1rowsoutof 1 Search | g
Requirement Schema Subject Resource tion Environment Condition Decision Verification Result
Test Case 3 Doctor = doctor_1 F = PatientD_F Ith =View Conditon=Amy Vatue Permit FALSE
Policy(s) and Matching result against the selcted security requirement: ® 2 rowsoutof 2 search | @8 B
Segquence No i Poficy Name | Rule Combination Algorithm Policy Enforcement Algorithm Combined Result
1. | ABAC : N icy | Deny-overrides | Deny Biased Deny
2 | ABAC : DoctarPalicy | Deny-overrides] Deny Bissed Deny
Rule{s) and Matching result of Selected Policy against the selcted security requirement: & 32 rows cutof 32 Search | @ I'
Sequence No Subject Resaurce Action Environment Condition Decision Inheritance Relation Match Result
i Doctor = doctor_1 oid =Patienta_O ds I It =\View Parmit Originated
T = Doctor=doctor_1 | OidMedicalRecords = PatientB_OldMedicalRecords | Healthcarsactions = View beny. “Originsted
3 Doctor = doctor_1 OldMedicalRecords = PatientC_OldMedicalRecords HealthcareActions = View Deny Originated
4 Doctor = doctor_1 PatientF i = PatientA | linfi | Hesl! = View Deny Originated
5 Doctor = doctor_1 = PatientB_8 lin | Healthcareictions = View Deny O d
& Doctor = doctor_1 Patier o = PatientC_Persanalinfo HealthcareActions = View Deny Originated
7 Doctor = doctor_1 Pri = PatientA_Pri HealthcareActions = View Permit Originated
8 Doctor = doctor_1 i = Patienta, | Health { =add Permit Ori d
& | boctor=doctar_t PrivateNotes = PatientB_PrivateN | action=4 . Deny Orignated
10 Doctor = doctor_1 Pri = PatientC_Pr Art valoe Deny Originated
11 Dector = doctor_2 Oldhedical = PatiantA_Old i d. I =View Deny Originated
12 Dogtor = doctor_2 OldMediczlRecords = PatientB_OldMedicalRecords Healthcaredctions = View Permit Originated
13 Doctor = doctor_2 OidhedicalRecords = PatientC_OldMedicalRecords HealthcareActions = View Deny Originated Not Applicable
14 Doctor = doctor_2 PatientPersonalinfo = PatientA_Personalinfo HealthcareActions = View Deny Originated Mot Applicable
15 | Doctor=doctor2 | Patienthersonalinfo = Patientd Personalinfo | Healthcaredctions = View ey _Oignstsd | Not Applicable
16 Doctor = doctor_2 PatlentF = PatientC_Personalinfo | HealthcareActions = View Deny Originated Not Applicable
7 Doctor = doctor_2 = PatientA_Pri Deny Originated Mot Applicable
18 Doctor = doctor_2 = PatientB_Pr Permit Originated Not Applicable
.15] Osctor-docord = Pathents, ihohes ! il Orignzted | Not Applicable
20 Doctor = doctor_2 atientC,_| Artie ¢ Vatlue Deny Originated Not Applicable
: | Doctor = doctor_3 OldMedicalRecords = Patients_OldMedicalRecords HealthcareActions = View Deny Originated Not Applicable
22 | Occc=doctopd | DidMedicafiecands= fatients. Odbedicaliecords: | Heatihicaredctons = vieiv _Detw *igirated | Net Applicable
23 Doctor = doctor_3 OidhdedicalRecords = PatientC_OldMedicalRecords | HealthcareActions = View Permit Originated Not Applicable
24 Doctor = doctor 3 Patient! fo = PatientA_} linf HealthcareActions = View Deny Originated Nat Applicable
s | Doctor = doctor 3 Patien linfa = Patiants_F linfi | I = View Deny Originated |_Not Applicable
26 Doctor = doctor_3 Patientd = Patientl_Personalinfo Healthcarsactions = View Deny O d Mot Applicable
27 Doctor = doctor_3 = PatientA_Pri Deny Originated Not Applicable
I8 Doctor = doctor_3 BtientB_Pri Deny Qriginated
T | Docior=dactors P : = | Healtncareactions = view permit Originated
30 Doctor = doctor_3 Pr HealthcareActions = Add Permit Origi
51 | Dector =docter 3 | Heal ons = View Pefmit Ori
52| bocwr=doctor3 | Pri e | Hesithcareactions =Add Permiz | Ongnated

Fig. 30. Doctor Policy: Match Results

As you can see there has not been a

rule defined for doctor 1 or doctor 2 — Action

WWW.SECURITYPOLICYTOOL.COM 21

— PatientD PrivateNotes which is known as an Undecided Rule error.

16 RESOLVING THIS ERROR - TEST CASE 3 (UNDECIDED RULE)

To solve this error, the policy author would need to define specific rules for all subject at-
tributes (e.g., include doctor_1 and doctor_2) in any policies that handle access requests to
PatientD_PrivateNotes. For example, adding the rules below to the DoctorPolicy for our specific
example. ..

DoctorPolicy: Add (4) New Rules:

(Rule No. = 33) — (Doctor = doctor_1) — (Action = View) — (Resource = PatientD_PrivateNotes) — decision = Permit
(Rule No. = 34) — (Doctor = doctor_1) — (Action = Add) — (Resource = PatientD_PrivateNotes) — decision = Permit
(Rule No. = 35) — (Doctor = doctor_2) — (Action = View) — (Resource = PatientD_PrivateNotes) — decision = Permit
(Rule No. = 36) — (Doctor = doctor_2) — (Action = Add) — (Resource = PatientD_PrivateNotes) — decision = Permit

33 Doctor = doctor_ 1 PrivateNotes = PatientD_PrivateMNotes HealthcareActions = View z e tic 2 Permit Originated
34 Doctor = doctor_1 PrivateNotes = PatientD_PrivateMotes HealthcareActions = Add Permit Originated
35 Doctor = doctor_2 PrivateNotes = PatientD_PrivateMotes HealthcareActions = View Permit Originated
36 Doctor = doctor_2 PrivateNotes = PatientD_PrivateMotes HealthcareActions = Add \ = T Permit Originated v |

Fig. 31. Doctor Policy: New Rules (33,34,35,36)

Now, looking out our Verification results and Match Results we will see that we no longer have
an “Undecided Rule” error occurring. The Verification Result is still “False” due to our choices
in our Combination Algorithm = Deny-overrides and Enforcement Algorithm = Deny Biased.

For example, ManagerPolicy has no rules related to the security requirement (doctor_one —
View — PatientD_PrivateNotes) we are using for testing which is why see all Match Rules =
Not Applicable. Due to our selection to use Deny Biased for our Enforcement Algorithm the
“Combined Result” for ManagerPolicy = Deny. However, in the case of the DoctorPolicy we
have the Combined Result = Permit due to the new rules we added (e.g., see new Rule 33
below). Hence, we have opposing Combined Results (ManagerPolicy = Deny; DoctorPolicy =
Permit). Finally, the Combination Algorithm = Deny-overrides which makes a definitive answer
for our Verification Results. The Deny-overrides selection overrules the Permit result from the
DoctorPolicy in favor of the Deny result from the ManagerPolicy to make the final Verification
Result = False.

22

Policy Verification (lune 20, 2018 11:54:15)(s) Summary @ 1 rows outof 1 | Search [ER]
Status Name Verification Type Verification Technique Mumber of Policy(s) Combination Algorithm Enforcement Algorithm Policy List
UpToDate Policy Verification (June 20, 2018 11:54:15) Standard Combined Policy 2 Deny-overrides Deny Biased ABAC:ManagerPelicy, ABAC:DoctorPolicy
Result{s) with selected verification (Policy Verification (June 20, 2018 11:54:15)) <@ 1 rows out of 1 Search ﬂé (-]
Requirement Schema Subject Resource Action Environment Condition Decision Verification Result
Test Caze 3 Doctor = doctor_1 PrivateNotes = PatientD_PrivateMotes HealthcareActions = View i = Permit FALSE
Policy(s) and Matching result against the selcted security requirement: @ 2 rows outof 2 search ﬂE IHI

Sequence No Policy Name Rule Combination Algorithm Policy Enforcement Algorithm Combined Result
1 ABAC - ManagerPolicy Deny-overrides Deny Biased Deny
2 ABAC - DoctorPalicy Deny-overides. Deny Biased Permit
Rule(s] and Matching result of Selected Policy against the selcted security requirement @ 36 rows out of 36 Search]
Sequence No Subject Resource Action Environment Condition Decision Inheritance Relation Match Result

20 Doctor = doctor_2 PrivateMotes = PatientC_PrivateMotes Action = A s A alys Deny Originated Not Applicable
21 Doctor =doctor_3 OldMedicalRecords = PatientA_OldMedicalRecords HealthcareActions = View o slus Deny Originated Not Applicable
22 Dector = docter_3 OldMedicalRecords = PatientB_OldMedicalRecords HealthcareActions = View . ue Deny Originated Not Applicable
23 Doctor =doctor_3 OldMedicalRecords = PatientC_OldMedicalRecords HealthcareActions = View o alus Permit Originated Not Applicable
24 Doctor = doctor_3 PatizntPersonalinfo = Patientd_Personalinfo HealthcareActions = View o Deny Originated Not Applicable
25 Dector = docter_3 PatientPersonalinfo = PatientB_Personalinfo HealthcareActions = View valy Deny Originatad Not Applicable
26 Doctor = doctor_3 PatientPersonalinfo = PatientC_Personalinfo HealthcareActions = View alus Deny Originated Not Applicable
27 Doctor = doctor_3 PrivateNotes = Patientd_PrivateNotes ction = ue Deny Originated Not Applicable
23 Doctor = doctor 3 PrivateMotes = PatientB_Privatelotes Action = An e A alue Deny Originated Not Applicable
29 Doctor =doctor_3 PrivateNotes = PatientC_PrivateNotes HealthcarsActions = View o uz Permit Originated Not Applicable
30 Doctor = doctor_3 Privatehotes = PatientC_Privatelotes HealthcareActions = Add - Permit Originated Not Applicable
31 Doctor = doctor_3 PrivateMotes = PatientD_PrivateNotes HealthcareActions = View aluz Permit Originated Not Applicable
32 Doctor = doctor_3 PrivateMotes = PatientD_PrivateNotes HealthcareActions = Add Permit Originated Not Applicable
33 Doctor = doctor_1 PrivateMotes = PatientD_PrivateNotes HealthcareActions = View Permit Originated Permit

34 Doctor = doctor_1 PrivateMotes = PatientD_PrivateNotes HealthcareActions = Add aluz Permit Originated Not Applicable
35 Doctor = doctor_2 PrivateMotes = PatientD_PrivateNotes HealthcareActions = View Permit Originated Not Applicable
36 Doctor = doctor_2 PrivateMotes = PatientD_PrivateNotes HealthcareActions = Add A 3lus Permit Originated Not Applicable

Fig.

17 CONCLUSION

Now you should have a better understanding of what to look for as you go onto verify your
access control policies with Security Policy Tool. In addition to this document there are other
resources located in the Learning Center in your My account page that will help you start
leveraging Security Policy Tool to prevent access control leaks, today!

32. Updated Results: No Undecided Rule

If you have not yet, download Security Policy Tool — Lite Version for FREE now! Close the door
the Access Control Leaks and save time and cost creating, modeling, testing, and verifying your
access control policies, today.

Click here to begin securing your policies now — Life_Version.

|NF%BEY§ND

\n

InfoBeyond Technology, LLC is an innovative company specializing in Network, Machine Learning and Data
Security within the Information Technology industry. The mission of InfoBeyond is to research, develop, and
deliver viable software products for network communication and security. Some of our research is sponsored by

x

Department of Defense, Department of Energy, Missile Defense Agency, Department of Transportation, NIST
(National Institute of Standards and Technology), etc. Security Policy Tool is Awarded the 2017 Innovative Se-
curity Solution Award at the 2017 Big Data and SDN/NFV Summit. NXdrive is a fragment-based cybersecurity

storage system and more information can be found at www.NXdrive.com. The company is featured as one of
50 fast growth IT small businesses in 2017 by The Silicon Review.

https://www.securitypolicytool.com/demo

