
WWW.SECURITYPOLICYTOOL.COM 1

Bank Policy Test Cases
(InfoBeyond Technology LLC)

Abstract

This document demonstrates access control test cases using Security Policy Tool, a software tool for
Access Control Security Managers, Policy Authors, and other IT Security Professionals specializing in the
performance of access control systems. Access control policies are designed to protect the accessibility of
online resources in networks, IoTs, healthcare systems, financial service systems, enterprise IT and clouds,
military systems, and other online environments. There are several challenges in building robust access
control models for these systems including (i) effectively composing secure policies and rules, (ii) testing
these policies systematically, (iii) verifying these policies to prevent access control leaks. Security Policy
Tool solves these issues by providing powerful access control policy modeling, testing, and verification
features that empower organizations to close the door to access control leaks.

Index Terms

Access control, attribute-based access control (abac), role-based access control (rbac), security policy
editing, test, verification, deployment, access control leaks, XACML, software tool.

F

1 INTRODUCTION TO TEST CASES

This document and attached Security Policy Tool – Project Files have been designed to help you
gain an understanding of what common access control errors look like, how they are created, and
how to resolve them. Organizations who leverage Security Policy Tool’s systematic modeling,
testing and verification features are empowered to efficiently identify errors and close the door
to access control leaks.

These Bank Policy test cases have been created by InfoBeyond Technology LLC to demonstrate
commonly found errors in access control policy design such as Leak Privilege, Block Privilege,
Inheritance Loop, Separation of Duty, and Inconsistent Assignment. These test cases consist of
policies/rules to better illustrate how Security Policy Tool enhances access control security. The
goal of these test cases is to provide a starting point for what to expect as you go on to use
Security Policy Tool to analyze your own policy verification results for errors.

2 SETTING UP THE POLICIES – TEST CASE 1 (LEAK PRIVILEGE)
This bank example contains three policies (BankTeller Policy & LoanOfficer Policy & FManager
Policy). The Attribute /Attribute Values include in these policies are as shown in Figure 1.

• Contact us at: E-mail: Info@Securitypolicytool.com

Security Policy Tool (www.Securitypolicytool.com) is a commercial version of NIST(National Institute of Standards and Technology)’s ACPT
(Access Control Policy Tool). With tremendous consultation with NIST experts, Security Policy Tool substantially enhances and expands the
NIST’s ACPT design with advanced features for achieving high security confidence access control levels such that it can be commercialized.
The development of Security Policy Tool is financially sponsored by NIST via a SBIR (Small Business Innovation Research) Phase I and
II programs. It specifically improves the NIST’s ACPT design to provide a robust, unified, professional, and functionally powerful access
control policy tool.

www.InfoBeyondtech.com
https://securitypolicytool.com/Content/files/PolicyTestCases.zip
http://www.infobeyondtech.com
www.Securitypolicytool.com


WWW.SECURITYPOLICYTOOL.COM 2

Fig. 1. Test Case 1

3 MODELING YOUR POLICY – TEST CASE 1 (LEAK PRIVILEGE)
Now that we have entered our attributes we can model our three policies (BankTeller Policy
& LoanOfficer Policy & FManager Policy). See the list below of the rules contained in each of
these policies. You can open a “New (blank) Project” and build these policies by entering the
following rules below:

BankTeller Policy:
(Bank Teller = teller 1, CustomerOne PersonalInfo, Create) →Permit
(Bank Teller = teller 1, CustomerOne PersonalInfo, View) →Permit
(Bank Teller = teller 1, CustomerTwo PersonalInfo, Create) →Permit
(Bank Teller = teller 1, CustomerTwo PersonalInfo, View) →Permit
(Bank Teller = teller 1, CustomerThree PersonalInfo, Create) →Permit
(Bank Teller = teller 1, CustomerThree PersonalInfo, View) →Permit
(Bank Teller = teller 2, CustomerOne PersonalInfo, Create) →Permit
(Bank Teller = teller 2, CustomerOne PersonalInfo, View) →Permit
(Bank Teller = teller 2, CustomerTwo PersonalInfo, Create) →Permit
(Bank Teller = teller 2, CustomerTwo PersonalInfo, View) →Permit
(Bank Teller = teller 2, CustomerThree PersonalInfo, Create) →Permit
(Bank Teller = teller 2, CustomerThree PersonalInfo, View) →Permit
(Bank Teller = teller 3, CustomerOne PersonalInfo, Create) →Permit
(Bank Teller = teller 3, CustomerOne PersonalInfo, View) →Permit
(Bank Teller = teller 3, CustomerTwo PersonalInfo, Create) →Permit
(Bank Teller = teller 3, CustomerTwo PersonalInfo, View) →Permit
(Bank Teller = teller 3, CustomerThree PersonalInfo, Create) →Permit
(Bank Teller = teller 3, CustomerThree PersonalInfo, View) →Permit



WWW.SECURITYPOLICYTOOL.COM 3

(Bank Teller = teller 1, CustomerOne Loan, View) →Permit
(Bank Teller = teller 1, CustomerTwo Loan, View) →Permit
(Bank Teller = teller 2, CustomerOne Loan, View) →Permit
(Bank Teller = teller 2, CustomerTwo Loan, View) →Permit
(Bank Teller = teller 3, CustomerOne Loan, View) →Permit
(Bank Teller = teller 3, CustomerTwo Loan, View) →Permit
(Bank Teller = teller 1, CustomerOne Loan, Approve) →Deny
(Bank Teller = teller 1, CustomerTwo Loan, Approve) →Deny
(Bank Teller = teller 2, CustomerOne Loan, Approve) →Deny
(Bank Teller = teller 2, CustomerTwo Loan, Approve) →Permit
(Bank Teller = teller 3, CustomerOne Loan, Approve) →Deny
(Bank Teller = teller 3, CustomerTwo Loan, Approve) →Deny

LoanOfficer Policy:
(Loan Officer = officer 1, CustomerOne PersonalInfo, View) →Permit
(Loan Officer = officer 1, CustomerOne PersonalInfo, Create) →Permit
(Loan Officer = officer 1, CustomerTwo PersonalInfo, View) →Permit
(Loan Officer = officer 1, CustomerTwo PersonalInfo, Create) →Permit
(Loan Officer = officer 1, CustomerThree PersonalInfo, View) →Permit
(Loan Officer = officer 1, CustomerThree PersonalInfo, Create) →Permit
(Loan Officer = officer 1, CustomerOne Loan, View) →Permit
(Loan Officer = officer 1, CustomerOne Loan, Create) →Permit
(Loan Officer = officer 1, CustomerTwo Loan, View) →Permit
(Loan Officer = officer 1, CustomerTwo Loan, Create) →Permit
(Loan Officer = officer 2, CustomerOne PersonalInfo, View) →Permit
(Loan Officer = officer 2, CustomerOne PersonalInfo, Create) →Permit
(Loan Officer = officer 2, CustomerTwo PersonalInfo, View) →Permit
(Loan Officer = officer 2, CustomerTwo PersonalInfo, Create) →Permit
(Loan Officer = officer 2, CustomerThree PersonalInfo, View) →Permit
(Loan Officer = officer 2, CustomerThree PersonalInfo, Create) →Permit
(Loan Officer = officer 2, CustomerOne Loan, View) →Permit
(Loan Officer = officer 2, CustomerOne Loan, Create) →Permit
(Loan Officer = officer 2, CustomerTwo Loan, View) →Permit
(Loan Officer = officer 2, CustomerTwo Loan, Create) →Permit
(Loan Officer = officer 1, CustomerOne Loan, Approve) →Deny
(Loan Officer = officer 1, CustomerTwo Loan, Approve) →Deny
(Loan Officer = officer 2, CustomerOne Loan, Approve) →Deny
(Loan Officer = officer 2, CustomerTwo Loan, Approve) →Deny

FManager Policy:
(Manager = manager, CustomerOne PersonalInfo, Create) →Permit
(Manager = manager, CustomerOne PersonalInfo, View) →Permit
(Manager = manager, CustomerTwo PersonalInfo, Create) →Permit
(Manager = manager, CustomerTwo PersonalInfo, View) →Permit
(Manager = manager, CustomerThree PersonalInfo, Create) →Permit
(Manager = manager, CustomerThree PersonalInfo, View) →Permit
(Manager = manager, CustomerOne Loan, Create) →Permit
(Manager = manager, CustomerOne Loan, View) →Permit
(Manager = manager, CustomerTwo Loan, Create) →Permit
(Manager = manager, CustomerTwo Loan, View) →Permit
(Manager = manager, CustomerOne Loan, Approve) →Permit
(Manager = manager, CustomerTwo Loan, Approve) →Permit

After entering the rules above your modeled policies should look like the screenshots below. If
you did not create your own Project File, you can simply open Security Policy Tool – Project
File: BankTestCase1 and these policies will have been already created for you.



WWW.SECURITYPOLICYTOOL.COM 4

Fig. 2. BankTeller Policy

Fig. 3. LoanOfficer Policy



WWW.SECURITYPOLICYTOOL.COM 5

Fig. 4. FManager Policy

4 INDIVIDUAL SECURITY REQUIREMENTS - TEST CASE 1 (LEAK PRIVILEGE)
The final step before analyzing these policies for errors is to create individual security require-
ments to use for testing. If you are building a “New (blank) Project” on your own you will enter
the security requirements as follows.

Individual Security Requirements:
(BankTeller = teller 1) & (Action = Approve) & (LoanInfo = CustomerOne Loan) → decision = Permit
(BankTeller = teller 1) & (Action = Approve) & (LoanInfo = CustomerTwo Loan) → decision = Permit
(BankTeller = teller 2) & (Action = Approve) & (LoanInfo = CustomerOne Loan) → decision = Permit
(BankTeller = teller 2) & (Action = Approve) & (LoanInfo = CustomerTwo Loan) → decision = Permit
(BankTeller = teller 3) & (Action = Approve) & (LoanInfo = CustomerOne Loan) → decision = Permit
(BankTeller = teller 3) & (Action = Approve) & (LoanInfo = CustomerTwo Loan) → decision = Permit

After entering the rules above your individual security requirements should look like the screen-
shot below. If you did not create your own Project File you can simply open Security Policy Tool
– Project File: BankTestCase1 and these requirements will have been already created for you.

Fig. 5. Individual Security Requirements

5 POLICY VERIFICATION/ANALYZING RESULTS - TEST CASE 1 (LEAK PRIVILEGE)
Now that we are ready to test our policies let’s discuss the error we will be looking at in this first
example. When policies are designed, there is potential for a “Leak Privilege” being created. A
Leak Privilege occurs when a flaw in your policy logic is authorizing a subject to take an action



WWW.SECURITYPOLICYTOOL.COM 6

you did not intend for them to take. This error can occur due to a mistaken privilege assignment
directly or careless privilege inheritance indirectly as well.

In our example, an individual at this bank has been assigned a role of Bank Teller = teller 2 at
the facility. We have designed several rules in the BankTeller Policy, a few of which specifying
Bank Teller subjects are unable to Approve any LoanInfo resources. In this test case, we are
going to verify that this is true.

We will run one “Single Policy” Verification to reveal if their is a Leak Privilege present in our
policies. To do this, we will right-click Model Verification and select New Policy Verification. Then
we will choose Test Case 1 (security requirement), BankTeller Policy, Single Verification and select
run. Again, this will have already been done for you if you open Project File: BankTestCase1.

Fig. 6. BankTeller Policy x Test Case 1

As you can see from our verification results our BankTeller Policy is generating a True result for
Security Requirement (4) thus Permitting (Bank Teller = teller 2) to approve CustomerTwo LoanInfo
which is known as a Leak Privilege error.

6 RESOLVING THIS ERROR - TEST CASE 1 (LEAK PRIVILEGE)
To solve a Leak Privilege the policy author would need to go back and either update or delete
the related rule that is creating this error. To view which specific Rules are resulting in these
Verification Results we can click on all (6) of our specific Results (False; False; False; True; False;
False) and see which Rules have “Match Results”. Since we are already aware of which Result
is incorrect let’s take a look at it.

See the screenshots below of our Policy Match Results to discover which specific rule is related
to our unintended Verification Result (e.g., Permit = True).



WWW.SECURITYPOLICYTOOL.COM 7

Fig. 7. BankTeller Policy: Match Results

Now that we have pinpointed our rule related to our Leak Privilege Error we can go back
and make changes or possibly remove this rule. Depending on your organizational structure the
policy author or access control administrator would need to decide what is the most appropriate
action to take to resolve the error. There is no “right” or “wrong” solution for this, you would
need to determine what is most appropriate based on your organizational needs.

For our example, we are going to modify Rule 28 in the BankTeller Policy to Deny “BankTeller
= teller 2” to Approve CustomerTwo Loan which will in turn resolve the Leak Privilege. For
this example, we are fixing our mistake in unintentionally selecting Permit for this individual
(teller 2) to be able to Approve the resource.

BankTeller Policy: Modify (28) Rule:
(Rule No. = 28) → (Bank Teller = teller 2) → (Action = Approve) →(Resource = CustomerTwo Loan)
→ decision = Deny

Fig. 8. BankTeller Policy: Modified Rule (28)

Which then when we “Refresh” our previous Verification Results we no longer have a Leak
Privilege occurring:



WWW.SECURITYPOLICYTOOL.COM 8

Fig. 9. Updated Results: BankTeller Policy (No Leak Privilege)

7 SETTING UP THE POLICIES – TEST CASE 2 (BLOCK PRIVILEGE)
This bank example contains three policies (BankTeller Policy & LoanOfficer Policy & FManager
Policy). The attributes in this example have not been changed from previous Test Case 1. The
Attribute/Attribute Values included in these policies are as shown in Figure 10.

Fig. 10. Test Case 2

8 MODELING YOUR POLICY – TEST CASE 2 (BLOCK PRIVILEGE)
Now that we have entered our attributes we can model our three policies (BankTeller Policy
& LoanOfficer Policy & FManager Policy). See the list below of the rules contained in each of



WWW.SECURITYPOLICYTOOL.COM 9

these policies. You can open a “New (blank) Project” and build these policies by entering the
following rules below:

BankTeller Policy:
(Bank Teller = teller 1, CustomerOne PersonalInfo, Create) →Permit
(Bank Teller = teller 1, CustomerOne PersonalInfo, View) →Permit
(Bank Teller = teller 1, CustomerTwo PersonalInfo, Create) →Permit
(Bank Teller = teller 1, CustomerTwo PersonalInfo, View) →Permit
(Bank Teller = teller 1, CustomerThree PersonalInfo, Create) →Permit
(Bank Teller = teller 1, CustomerThree PersonalInfo, View) →Permit
(Bank Teller = teller 2, CustomerOne PersonalInfo, Create) →Permit
(Bank Teller = teller 2, CustomerOne PersonalInfo, View) →Permit
(Bank Teller = teller 2, CustomerTwo PersonalInfo, Create) →Permit
(Bank Teller = teller 2, CustomerTwo PersonalInfo, View) →Permit
(Bank Teller = teller 2, CustomerThree PersonalInfo, Create) →Permit
(Bank Teller = teller 2, CustomerThree PersonalInfo, View) →Permit
(Bank Teller = teller 3, CustomerOne PersonalInfo, Create) →Permit
(Bank Teller = teller 3, CustomerOne PersonalInfo, View) →Permit
(Bank Teller = teller 3, CustomerTwo PersonalInfo, Create) →Permit
(Bank Teller = teller 3, CustomerTwo PersonalInfo, View) →Permit
(Bank Teller = teller 3, CustomerThree PersonalInfo, Create) →Permit
(Bank Teller = teller 3, CustomerThree PersonalInfo, View) →Permit
(Bank Teller = teller 1, CustomerOne Loan, View) →Permit
(Bank Teller = teller 1, CustomerTwo Loan, View) →Permit
(Bank Teller = teller 2, CustomerOne Loan, View) →Permit
(Bank Teller = teller 2, CustomerTwo Loan, View) →Permit
(Bank Teller = teller 3, CustomerOne Loan, View) →Permit
(Bank Teller = teller 3, CustomerTwo Loan, View) →Permit
(Bank Teller = teller 1, CustomerOne Loan, Approve) →Deny
(Bank Teller = teller 1, CustomerTwo Loan, Approve) →Deny
(Bank Teller = teller 2, CustomerOne Loan, Approve) →Deny
(Bank Teller = teller 2, CustomerTwo Loan, Approve) →Deny
(Bank Teller = teller 3, CustomerOne Loan, Approve) →Deny
(Bank Teller = teller 3, CustomerTwo Loan, Approve) →Deny

LoanOfficer Policy:
(Loan Officer = officer 1, CustomerOne PersonalInfo, View) →Permit
(Loan Officer = officer 1, CustomerOne PersonalInfo, Create) →Permit
(Loan Officer = officer 1, CustomerTwo PersonalInfo, View) →Permit
(Loan Officer = officer 1, CustomerTwo PersonalInfo, Create) →Permit
(Loan Officer = officer 1, CustomerThree PersonalInfo, View) →Permit
(Loan Officer = officer 1, CustomerThree PersonalInfo, Create) →Permit
(Loan Officer = officer 1, CustomerOne Loan, View) →Permit
(Loan Officer = officer 1, CustomerOne Loan, Create) →Permit
(Loan Officer = officer 1, CustomerTwo Loan, View) →Deny
(Loan Officer = officer 1, CustomerTwo Loan, Create) →Permit
(Loan Officer = officer 2, CustomerOne PersonalInfo, View) →Permit
(Loan Officer = officer 2, CustomerOne PersonalInfo, Create) →Permit
(Loan Officer = officer 2, CustomerTwo PersonalInfo, View) →Permit
(Loan Officer = officer 2, CustomerTwo PersonalInfo, Create) →Permit
(Loan Officer = officer 2, CustomerThree PersonalInfo, View) →Permit
(Loan Officer = officer 2, CustomerThree PersonalInfo, Create) →Permit
(Loan Officer = officer 2, CustomerOne Loan, View) →Permit
(Loan Officer = officer 2, CustomerOne Loan, Create) →Permit
(Loan Officer = officer 2, CustomerTwo Loan, View) →Permit
(Loan Officer = officer 2, CustomerTwo Loan, Create) →Permit
(Loan Officer = officer 1, CustomerOne Loan, Approve) →Deny
(Loan Officer = officer 1, CustomerTwo Loan, Approve) →Deny
(Loan Officer = officer 2, CustomerOne Loan, Approve) →Deny
(Loan Officer = officer 2, CustomerTwo Loan, Approve) →Deny

FManager Policy:
(Manager = manager, CustomerOne PersonalInfo, Create) →Permit
(Manager = manager, CustomerOne PersonalInfo, View) →Permit
(Manager = manager, CustomerTwo PersonalInfo, Create) →Permit
(Manager = manager, CustomerTwo PersonalInfo, View) →Permit



WWW.SECURITYPOLICYTOOL.COM 10

(Manager = manager, CustomerThree PersonalInfo, Create) →Permit
(Manager = manager, CustomerThree PersonalInfo, View) →Permit
(Manager = manager, CustomerOne Loan, Create) →Permit
(Manager = manager, CustomerOne Loan, View) →Permit
(Manager = manager, CustomerTwo Loan, Create) →Permit
(Manager = manager, CustomerTwo Loan, View) →Permit
(Manager = manager, CustomerOne Loan, Approve) →Permit
(Manager = manager, CustomerTwo Loan, Approve) →Permit

After entering the rules above your modeled policies should look like the screenshots below. If
you did not create your own Project File, you can simply open Security Policy Tool – Project
File: BankTestCase2 and these policies will have been already created for you.

Fig. 11. BankTeller Policy



WWW.SECURITYPOLICYTOOL.COM 11

Fig. 12. LoanOfficer Policy

Fig. 13. FManager Policy

9 INDIVIDUAL SECURITY REQUIREMENT - TEST CASE 2 (BLOCK PRIVILEGE)
The final step before analyzing these policies for errors is to create individual security require-
ments to use for testing. If you are building a “New (blank) Project” on your own you will enter
the following security requirements below:

Individual Security Requirements:
(Loan Officer = officer 1) & (Action = Create) & (LoanInfo = CustomerOne Loan) → decision = Permit
(Loan Officer = officer 1) & (Action = View) & (LoanInfo = CustomerOne Loan) → decision = Permit
(Loan Officer = officer 1) & (Action = Create) & (LoanInfo = CustomerTwo Loan) → decision = Permit
(Loan Officer = officer 1) & (Action = View) & (LoanInfo = CustomerTwo Loan) → decision = Permit
(Loan Officer = officer 2) & (Action = Create) & (LoanInfo = CustomerOne Loan) → decision = Permit



WWW.SECURITYPOLICYTOOL.COM 12

(Loan Officer = officer 2) & (Action = View) & (LoanInfo = CustomerOne Loan) → decision = Permit
(Loan Officer = officer 2) & (Action = Create) & (LoanInfo = CustomerTwo Loan) → decision = Permit

(Loan Officer = officer 2) & (Action = View) & (LoanInfo = CustomerTwo Loan) → decision = Permit

After entering the rules above your individual security requirements should look like the screen-
shot below. If you did not create your own Project File you can simply open Security Policy Tool
– Project File: BankTestCase2 and these requirements will have been already created for you.

Fig. 14. Individual Security Requirement

10 POLICY VERIFICATION/ANALYZING RESULTS - TEST CASE 2 (BLOCK PRIVI-
LEGE)
Now that we are ready to test our policies let’s discuss the error we will be looking at in this
second example. When policies are designed there is potential for a “Block Privilege” error being
created. A Block Privilege error occurs when policy rules are blocking a subject’s legitimate access
to rightful resources. A Block Privilege is created when a policy cannot render a grant or deny
decision, no available logic in the AC policy algorithm for evaluating the access request, or by
mistaken privilege assignment directly.

For example, when the policy author was designing the logic for these bank policies; the author
intended all LoanOfficers to be able to Create all LoanInfo resources. However, to be able to
Create all LoanInfo resources, LoanOfficers also need to be able to View all LoanInfo resources.
To ensure the policy has been designed correctly let’s verify that this is true (e.g., LoanOfficer
→ View or Create → LoanInfo Resources).

We will run one “Merged Policy” Verification with all three of our policies to reveal the Block
Privilege error that is present in our policies. To do this, we will select Test Case 2 (security
requirement) and BankTeller Policy & LoanOfficer Policy & FManager Policy as a Merged Policy
Verification and analyze our verification result. Again, this will have already been done for you
if you open Project File: BankTestCase2.



WWW.SECURITYPOLICYTOOL.COM 13

Fig. 15. Merged Policy x Test Case 2

Right away we will notice our Verification Results contains a False which is known as Block
Privilege. A rule or rules in our policy are incorrectly telling the system to not allow officer 1 to
View CustomerTwo Loan which is required for officer 1 to be able to Create LoanInfo resources.
If we click on our Security Requirement (4), we can analyze deeper the reasoning for this result
we have received. Here is where we will notice we have mistakenly selected the wrong privilege
assignment for this subject’s access on this resource.

Fig. 16. Merged Policy: Match Results

11 RESOLVING THIS ERROR - TEST CASE 2 (BLOCK PRIVILEGE)
To eliminate a Block Privilege error the policy author would need to go back and either update
the related rule that is creating this error or delete it and define a Policy Enforcement Algorithm
as Permit Biased because there will be no specific rule for this scenario. However, this could
potentially create errors for other rules in our policy so we will modify the exact rule in this
situation.



WWW.SECURITYPOLICYTOOL.COM 14

For example, if we were to modify this rule below in the LoanOfficer Policy to Permit. . .

LoanOfficer Policy: Modify Rule (9):
(Rule No. = 9) → (LoanOfficer = officer 1) → (Action = View) → (Resource = CustomerTwo Loan) → decision

= Permit

Fig. 17. LoanOfficer Policy: Modified Rule (9)

Then retest using the same Policy Verification selections as last time we will now get a True
Verification result showing that we no longer have a Block Privilege error occuring.

Fig. 18. Updated Policy: No Longer Blocking

12 SETTING UP THE POLICIES – TEST CASE 3 (INHERITANCE LOOP)
This bank example contains three policies (BankTeller Policy & LoanOfficer Policy & FManager
Policy). The attributes in this example have not been changed from previous Test Case 1 and
Test Case 2. The Attribute/Attribute Values included in these policies are as shown in Figure
19.



WWW.SECURITYPOLICYTOOL.COM 15

Fig. 19. Test Case 3

13 SUBJECT INHERITANCE – TEST CASE 3 (INHERITANCE LOOP)
Depending on your security needs or organizational structure you may decide to define Inheri-
tance relationships to help you generate policy Rules more quickly. For this bank policy example
we will define (3) Subject Inheritance Relationships. If you are creating your own Blank Project
enter the relationship rules below. If you did not create your own Project File, you can simply
open Security Policy Tool – Project File: BankTestCase3 and these relationships will have been
already created for you.

Subject Inheritance:
Beneficiary Values → Financial Manager = manager

Inherited Values → Loan Officer = officer 1 & officer 2

Beneficiary Values → Loan Officer = officer 1

Inherited Values → Bank Teller = teller 1 & teller 2 & teller 3

Beneficiary Values → Loan Officer = officer 2

Inherited Values → Bank Teller = teller 1 & teller 2 & teller 3

If we have created these Relationships correctly based on the above direction it will look like
this in Security Policy Tool:



WWW.SECURITYPOLICYTOOL.COM 16

Fig. 20. Subject Inheritance Relationships

By defining these relationships, any (Originated) Rules with Decision = Permit given to Bank
Teller subject attributes will now also be given to officer 1 & officer 2 as (Inherited) Rules
in our policies. Additionally any Rules with Decision = Permit given to Loan Officers subject
attributes will now also be given to the manager subject attribute. Originated Rules with Decision
= Deny are never Inherited. This is because typically Beneficiaries in these relationships are
higher ranking/senior roles that by nature will have less restrictions (e.g., denying access) than
roles that are providing the Inheritance Value (e.g., bank teller/loan officer in our example).

Hence, it will authorize the Beneficiaries to obtain all privileges of Inherited Values (e.g., gener-
ally lower-level roles) while not obtaining their typically tighter restrictions. If you would like
Beneficiaries to be Denied access similar to their Inherited Value you can still do so by manually
creating individual rules when you begin modeling.

14 UNDERSTANDING THIS ERROR - TEST CASE 3 (INHERITANCE LOOP)
Unlike all other Test Case examples, to demonstrate this error we do not need to run any policy
tests. Thus we do not have sections for modeling our policies, creating security requirements,
and running verification tests for this example. An Inheritance Loop is an error that occurs when
the policy author defines inheritance relations that gives a subject both recursive and subsequent
inheritance.

For example, an inheritance loop or sometimes called ”‘cyclical inheritance”’ could look like
this..

Person A can inherit → Person B Privileges
Person B can inherit → Person C Privileges

Person C can inherit → Person A Privileges

In our example an Inheritance Loop would look like the screenshot below...



WWW.SECURITYPOLICYTOOL.COM 17

Fig. 21. Inheritance Loop

However, in Security Policy Tool it is not possible to create this type of error. Security Policy
Tool automatically detects which attribute values are being selected as Beneficiaries/Inherited
Values to prevent Inheritance Loops. It will not allow attributes that are already allocated as
Inherited Values to a Beneficiary Value to then also be allocated as a Beneficiary Value to the
Beneficiary Value they are already giving their (inheritance) rules to.

See the screenshot below, values that would create an Inheritance Loop are unavailable to be
selected...



WWW.SECURITYPOLICYTOOL.COM 18

Fig. 22. Subject Inheritance: Cannot Add Any Value

In our example, allowing Bank Teller = teller 1, teller 2, or teller 3 to be able to be a Beneficiary
for LoanOfficer = officer 1 or officer 2 or Manager = manager would create an Inheritance Loop.
Security Policy Tool detects this issue and only allows Bank Tellers to be able to be defined as
a Beneficiary to other Bank Tellers since they are not Inheriting Values from each other at this
moment.

If we continue with our example and make teller 1 the beneficiary to teller 2 and teller 3 and
attempt to define another Inherited Value for teller 1 we will get this message below and avoid
creating an Inheritance Loop. See screenshot...



WWW.SECURITYPOLICYTOOL.COM 19

Fig. 23. Subject Inheritance: Loop Error Prevented

15 SETTING UP THE POLICIES – TEST CASE 4 (SEPARATION OF DUTY)
This bank example contains three policies (BankTeller Policy & LoanOfficer Policy & FManager
Policy). The attributes in this example have not been changed from previous Bank Test Cases.
The Attribute/Attribute Values included in these policies are as shown in Figure 24.



WWW.SECURITYPOLICYTOOL.COM 20

Fig. 24. Test Case 4

16 MODELING YOUR POLICY – TEST CASE 4 (SEPERATION OF DUTY)
Now that we have entered our attributes we can model our three policies (BankTeller Policy
& LoanOfficer Policy & FManager Policy). See the list below of the rules contained in each of
these policies. You can open a “New (blank) Project” and build these policies by entering the
following rules below:

BankTeller Policy:
(Bank Teller = teller 1, CustomerOne PersonalInfo, Create) →Permit
(Bank Teller = teller 1, CustomerOne PersonalInfo, View) →Permit
(Bank Teller = teller 1, CustomerTwo PersonalInfo, Create) →Permit
(Bank Teller = teller 1, CustomerTwo PersonalInfo, View) →Permit
(Bank Teller = teller 1, CustomerThree PersonalInfo, Create) →Permit
(Bank Teller = teller 1, CustomerThree PersonalInfo, View) →Permit
(Bank Teller = teller 2, CustomerOne PersonalInfo, Create) →Permit
(Bank Teller = teller 2, CustomerOne PersonalInfo, View) →Permit
(Bank Teller = teller 2, CustomerTwo PersonalInfo, Create) →Permit
(Bank Teller = teller 2, CustomerTwo PersonalInfo, View) →Permit
(Bank Teller = teller 2, CustomerThree PersonalInfo, Create) →Permit
(Bank Teller = teller 2, CustomerThree PersonalInfo, View) →Permit
(Bank Teller = teller 3, CustomerOne PersonalInfo, Create) →Permit
(Bank Teller = teller 3, CustomerOne PersonalInfo, View) →Permit
(Bank Teller = teller 3, CustomerTwo PersonalInfo, Create) →Permit
(Bank Teller = teller 3, CustomerTwo PersonalInfo, View) →Permit
(Bank Teller = teller 3, CustomerThree PersonalInfo, Create) →Permit
(Bank Teller = teller 3, CustomerThree PersonalInfo, View) →Permit



WWW.SECURITYPOLICYTOOL.COM 21

(Bank Teller = teller 1, CustomerOne Loan, View) →Permit
(Bank Teller = teller 1, CustomerTwo Loan, View) →Permit
(Bank Teller = teller 2, CustomerOne Loan, View) →Permit
(Bank Teller = teller 2, CustomerTwo Loan, View) →Permit
(Bank Teller = teller 3, CustomerOne Loan, View) →Permit
(Bank Teller = teller 3, CustomerTwo Loan, View) →Permit
(Bank Teller = teller 1, CustomerOne Loan, Approve) →Deny
(Bank Teller = teller 1, CustomerTwo Loan, Approve) →Deny
(Bank Teller = teller 2, CustomerOne Loan, Approve) →Deny
(Bank Teller = teller 2, CustomerTwo Loan, Approve) →Deny
(Bank Teller = teller 3, CustomerOne Loan, Approve) →Deny
(Bank Teller = teller 3, CustomerTwo Loan, Approve) →Deny

LoanOfficer Policy:
(Loan Officer = officer 1, CustomerOne PersonalInfo, View) →Permit
(Loan Officer = officer 1, CustomerOne PersonalInfo, Create) →Permit
(Loan Officer = officer 1, CustomerTwo PersonalInfo, View) →Permit
(Loan Officer = officer 1, CustomerTwo PersonalInfo, Create) →Permit
(Loan Officer = officer 1, CustomerThree PersonalInfo, View) →Permit
(Loan Officer = officer 1, CustomerThree PersonalInfo, Create) →Permit
(Loan Officer = officer 1, CustomerOne Loan, View) →Permit
(Loan Officer = officer 1, CustomerOne Loan, Create) →Permit
(Loan Officer = officer 1, CustomerTwo Loan, View) →Permit
(Loan Officer = officer 1, CustomerTwo Loan, Create) →Permit
(Loan Officer = officer 2, CustomerOne PersonalInfo, View) →Permit
(Loan Officer = officer 2, CustomerOne PersonalInfo, Create) →Permit
(Loan Officer = officer 2, CustomerTwo PersonalInfo, View) →Permit
(Loan Officer = officer 2, CustomerTwo PersonalInfo, Create) →Permit
(Loan Officer = officer 2, CustomerThree PersonalInfo, View) →Permit
(Loan Officer = officer 2, CustomerThree PersonalInfo, Create) →Permit
(Loan Officer = officer 2, CustomerOne Loan, View) →Permit
(Loan Officer = officer 2, CustomerOne Loan, Create) →Permit
(Loan Officer = officer 2, CustomerTwo Loan, View) →Permit
(Loan Officer = officer 2, CustomerTwo Loan, Create) →Permit
(Loan Officer = officer 1, CustomerTwo Loan, Approve) →Deny
(Loan Officer = officer 2, CustomerOne Loan, Approve) →Deny
(Loan Officer = officer 2, CustomerTwo Loan, Approve) →Deny

FManager Policy:
(Manager = manager, CustomerOne PersonalInfo, Create) →Permit
(Manager = manager, CustomerOne PersonalInfo, View) →Permit
(Manager = manager, CustomerTwo PersonalInfo, Create) →Permit
(Manager = manager, CustomerTwo PersonalInfo, View) →Permit
(Manager = manager, CustomerThree PersonalInfo, Create) →Permit
(Manager = manager, CustomerThree PersonalInfo, View) →Permit
(Manager = manager, CustomerOne Loan, Create) →Permit
(Manager = manager, CustomerOne Loan, View) →Permit
(Manager = manager, CustomerTwo Loan, Create) →Permit
(Manager = manager, CustomerTwo Loan, View) →Permit
(Manager = manager, CustomerOne Loan, Approve) →Permit

(Manager = manager, CustomerTwo Loan, Approve) →Permit

After entering the rules above your modeled policies should look like the screenshots below. If
you did not create your own Project File, you can simply open Security Policy Tool – Project
File: BankTestCase4 and these policies will have been already created for you.



WWW.SECURITYPOLICYTOOL.COM 22

Fig. 25. BankTeller Policy

Fig. 26. LoanOfficer Policy



WWW.SECURITYPOLICYTOOL.COM 23

Fig. 27. FManager Policy

17 SOD SECURITY REQUIREMENTS - TEST CASE 4 (SEPARATION OF DUTY)
The final step before analyzing these policies for errors is to create security requirements to use
for testing. If you are building a “New (blank) Project” on your own you will enter the following
security requirements below:

SOD Security Requirements:
(Loan Officer = officer 1) & (Action = Approve) & (LoanInfo = CustomerOne Loan) → decision = Permit

(Loan Officer = officer 1) & (Action = Create) & (LoanInfo = CustomerOne Loan) → decision = Permit

After entering the rules above your SOD security requirements should look like the screenshot
below. If you did not create your own Project File you can simply open Security Policy Tool –
Project File: BankTestCase4 and these requirements will have been already created for you.

Fig. 28. SOD Security Requirements

18 POLICY VERIFICATION/ANALYZING RESULTS - TEST CASE 4 (SEPARATION OF
DUTY)
Now that we are ready to test our policies let’s discuss the error we will be looking for in this
fourth example. When policies are designed there is potential for a “Separation of Duty” error
being created. A Separation of Duty error occurs when two or more rules cause competing inter-
ests among subjects, resources, or actions. For example, giving one subject too much privileges
to the point that they could misuse the system.

For example, when the policy author was designing the logic for these bank policies; the author
intended all LoanOfficers to be able to Create all LoanInfo resources. However, they should not
be able to Approve loans as way to ensure Loan Officers do not misuse their privileges to create



WWW.SECURITYPOLICYTOOL.COM 24

improper loans. To ensure the policy has been designed correctly let’s verify that this is false
(e.g., LoanOfficer → Approve → LoanInfo Resources).

We will run one “Single Policy” Separation of Duty Verification with our LoanOfficer Policy to
reveal the Separation of Duty error that is present in our policies. To do this, we will select SOD
1 (security requirement) and LoanOfficer Policy and analyze our verification results. Again, this
will have already been done for you if you open Project File: BankTestCase4.

Fig. 29. LoanOfficer Policy x SOD 1

Right away we will notice our test came back with two True Results which is not what was
intended. LoanOfficers should be able to Create loans but should not be able to Approve loans.
A rule or rules in our policy are incorrectly telling the system to allow officer 1 to Approve
CustomerTwo Loan. If we click on our Security Requirement related to Approving the resource,
we can analyze deeper the reasoning for this result we have received.



WWW.SECURITYPOLICYTOOL.COM 25

Fig. 30. LoanOfficer Policy: Match Results

19 RESOLVING THIS ERROR - TEST CASE 4 (SEPARATION OF DUTY)
Looking at the Match Results we will see all rules in the LoanOfficer have come back as ”‘Not
Applicable”’ which can only mean that we are missing a rule to cover this particular access
request. Upon further inspection we will see that in the LoanOfficer Policy all Loan Officers are
Denied to Approve LoanInfo resources except for the individual (officer one) on this specific
resource (CustomerOne Loan). In addition to missing this rule the Policy Enforcement Algorithm
has been selected as Permit-Biased thus why the result is Permit with no rules defined related
to the request.
To eliminate this error the policy author would need to go back and either update the Policy
Enforcement Algorithm to Deny Biased or go back to the LoanOfficer Policy and create a rule
for this scenario.

For this example, let’s create a new rule in the LoanOfficer Policy. . .

LoanOfficer Policy: New Rule (24):
(Rule No. = 24) → (LoanOfficer = officer 1) → (Action = Approve) → (Resource = CustomerOne Loan) → decision

= Deny

Fig. 31. LoanOfficer Policy: New Rule (24)



WWW.SECURITYPOLICYTOOL.COM 26

Then retest using the same SOD Verification selections as last time we will now get a False
Verification result showing that we no longer have a Seperation of Duty error occurring.

Fig. 32. Updated Policy: No Seperation of Duty

20 SETTING UP THE POLICIES – TEST CASE 5 (INCONSISTENT ASSIGNMENT)
This bank example contains three policies (BankTeller Policy & LoanOfficer Policy & FManager
Policy). The attributes in this example have not been changed from previous Test Case examples.
The Attribute/Attribute Values included in these policies are as shown in Figure 33.



WWW.SECURITYPOLICYTOOL.COM 27

Fig. 33. Test Case 5

21 MODELING YOUR POLICY – TEST CASE 5 (INCONSISTENT ASSIGNMENT)
Now that we have entered our attributes we can model our three policies (BankTeller Policy
& LoanOfficer Policy & FManager Policy). See the list below of the rules contained in each of
these policies. You can open a “New (blank) Project” and build these policies by entering the
following rules below:

BankTeller Policy:
(Bank Teller = teller 1, CustomerOne PersonalInfo, Create) →Permit
(Bank Teller = teller 1, CustomerOne PersonalInfo, View) →Permit
(Bank Teller = teller 1, CustomerTwo PersonalInfo, Create) →Permit
(Bank Teller = teller 1, CustomerTwo PersonalInfo, View) →Permit
(Bank Teller = teller 1, CustomerThree PersonalInfo, Create) →Permit
(Bank Teller = teller 1, CustomerThree PersonalInfo, View) →Permit
(Bank Teller = teller 2, CustomerOne PersonalInfo, Create) →Permit
(Bank Teller = teller 2, CustomerOne PersonalInfo, View) →Permit
(Bank Teller = teller 2, CustomerTwo PersonalInfo, Create) →Permit
(Bank Teller = teller 2, CustomerTwo PersonalInfo, View) →Permit
(Bank Teller = teller 2, CustomerThree PersonalInfo, Create) →Permit
(Bank Teller = teller 2, CustomerThree PersonalInfo, View) →Permit
(Bank Teller = teller 3, CustomerOne PersonalInfo, Create) →Permit
(Bank Teller = teller 3, CustomerOne PersonalInfo, View) →Permit
(Bank Teller = teller 3, CustomerTwo PersonalInfo, Create) →Permit
(Bank Teller = teller 3, CustomerTwo PersonalInfo, View) →Permit
(Bank Teller = teller 3, CustomerThree PersonalInfo, Create) →Permit
(Bank Teller = teller 3, CustomerThree PersonalInfo, View) →Permit



WWW.SECURITYPOLICYTOOL.COM 28

(Bank Teller = teller 1, CustomerOne Loan, View) →Permit
(Bank Teller = teller 1, CustomerTwo Loan, View) →Permit
(Bank Teller = teller 2, CustomerOne Loan, View) →Permit
(Bank Teller = teller 2, CustomerTwo Loan, View) →Permit
(Bank Teller = teller 3, CustomerOne Loan, View) →Permit
(Bank Teller = teller 3, CustomerTwo Loan, View) →Permit
(Bank Teller = teller 1, CustomerOne Loan, Approve) →Deny
(Bank Teller = teller 1, CustomerTwo Loan, Approve) →Deny
(Bank Teller = teller 2, CustomerOne Loan, Approve) →Deny
(Bank Teller = teller 2, CustomerTwo Loan, Approve) →Deny
(Bank Teller = teller 3, CustomerOne Loan, Approve) →Deny

(Bank Teller = teller 3, CustomerTwo Loan, Approve) →Deny

LoanOfficer Policy:
(Loan Officer = officer 1, CustomerOne PersonalInfo, View) →Permit
(Loan Officer = officer 1, CustomerOne PersonalInfo, Create) →Permit
(Loan Officer = officer 1, CustomerTwo PersonalInfo, View) →Permit
(Loan Officer = officer 1, CustomerTwo PersonalInfo, Create) →Permit
(Loan Officer = officer 1, CustomerThree PersonalInfo, View) →Permit
(Loan Officer = officer 1, CustomerThree PersonalInfo, Create) →Permit
(Loan Officer = officer 1, CustomerOne Loan, View) →Permit
(Loan Officer = officer 1, CustomerOne Loan, Create) →Permit
(Loan Officer = officer 1, CustomerTwo Loan, View) →Permit
(Loan Officer = officer 1, CustomerTwo Loan, Create) →Permit
(Loan Officer = officer 2, CustomerOne PersonalInfo, View) →Permit
(Loan Officer = officer 2, CustomerOne PersonalInfo, Create) →Permit
(Loan Officer = officer 2, CustomerTwo PersonalInfo, View) →Permit
(Loan Officer = officer 2, CustomerTwo PersonalInfo, Create) →Permit
(Loan Officer = officer 2, CustomerThree PersonalInfo, View) →Permit
(Loan Officer = officer 2, CustomerThree PersonalInfo, Create) →Permit
(Loan Officer = officer 2, CustomerOne Loan, View) →Permit
(Loan Officer = officer 2, CustomerOne Loan, Create) →Permit
(Loan Officer = officer 2, CustomerTwo Loan, View) →Permit
(Loan Officer = officer 2, CustomerTwo Loan, Create) →Permit
(Loan Officer = officer 1, CustomerOne Loan, Approve) →Deny
(Loan Officer = officer 1, CustomerTwo Loan, Approve) →Deny
(Loan Officer = officer 2, CustomerOne Loan, Approve) →Deny

(Loan Officer = officer 2, CustomerTwo Loan, Approve) →Deny

FManager Policy:
(Manager = manager, CustomerOne PersonalInfo, Create) →Permit
(Manager = manager, CustomerOne PersonalInfo, View) →Permit
(Manager = manager, CustomerTwo PersonalInfo, Create) →Permit
(Manager = manager, CustomerTwo PersonalInfo, View) →Permit
(Manager = manager, CustomerThree PersonalInfo, Create) →Permit
(Manager = manager, CustomerThree PersonalInfo, View) →Permit
(Manager = manager, CustomerOne Loan, Create) →Permit
(Manager = manager, CustomerOne Loan, View) →Permit
(Manager = manager, CustomerTwo Loan, Create) →Permit
(Manager = manager, CustomerTwo Loan, View) →Permit
(Manager = manager, CustomerOne Loan, Approve) →Permit

(Manager = manager, CustomerTwo Loan, Approve) →Permit

After entering the rules above your modeled policies should look like the screenshots below. If
you did not create your own Project File, you can simply open Security Policy Tool – Project
File: BankTestCase5 and these policies will have been already created for you.



WWW.SECURITYPOLICYTOOL.COM 29

Policy.eps

Fig. 34. BankTeller Policy

Fig. 35. LoanOfficer Policy



WWW.SECURITYPOLICYTOOL.COM 30

Fig. 36. FManager Policy

22 UNDERSTANDING THIS ERROR - TEST CASE 5 (INCONSISTENT ASSIGNMENT)
Now that we have our policies set up let’s discuss the error we will be looking at in this
fifth example. When XACML policies are being constructed there is potential for “Inconsistent
Assignment” errors being created. This error occurs when a policy author has unintentionally
assigned attributes, conditions, rule or other policy variables/values incorrectly in different poli-
cies. For example, Attribute LoanOfficer could be incorrectly termed as LoanOfficr or LoanOficer
in different policy documents.

Doing so, could result in a significant security vulnerability due to the system providing unin-
tended access decisions as consequence of the incorrectly defined policy value(s). Organizations
with very large and complex policies are especially at risk for this type of error as small
inconsistencies could very easily go unnoticed if they do not have a rigorous method for
modeling and testing their policies.

23 RESOLVING THIS ERROR - TEST CASE 5 (INCONSISTENT ASSIGNMENT)
Security Policy Tool by default prevents this error from occurring. After modeling your policies
you can automatically convert your policies into XACML 3.0. The XACML Editor included with
Security Policy Tool contains intuitive features to help you create secure and accurate XACML
documents. Several robust features that prevent inconsistent assignment errors include Integrity
Verification, Syntax Error Detection, Assistive XACML Code Completion, and others.



WWW.SECURITYPOLICYTOOL.COM 31

Fig. 37. Convert Modeled Policies into XACML



WWW.SECURITYPOLICYTOOL.COM 32

Fig. 38. Converted BankTeller Policy: No Errors

24 CONCLUSION

Now you should have a better understanding of what to look for as you go onto verify your
access control policies with Security Policy Tool. In addition to this document there are other
resources located in the Learning Center in your My account page that will help you start
leveraging Security Policy Tool to prevent access control leaks, today!

If you have not yet, download Security Policy Tool – Lite Version for FREE now! Close the door
the Access Control Leaks and save time and cost creating, modeling, testing, and verifying your
access control policies, today.

Click here to begin securing your policies now → Lite Version.

InfoBeyond Technology, LLC is an innovative company specializing in Network, Machine Learning and Data
Security within the Information Technology industry. The mission of InfoBeyond is to research, develop, and
deliver viable software products for network communication and security. Some of our research is sponsored by
Department of Defense, Department of Energy, Missile Defense Agency, Department of Transportation, NIST
(National Institute of Standards and Technology), etc. Security Policy Tool is Awarded the 2017 Innovative Se-
curity Solution Award at the 2017 Big Data and SDN/NFV Summit. NXdrive is a fragment-based cybersecurity
storage system and more information can be found at www.NXdrive.com. The company is featured as one of
50 fast growth IT small businesses in 2017 by The Silicon Review.

https://www.securitypolicytool.com/demo

