WWW.SECURITYPOLICYTOOL.COM 1

Bank Policy Test Cases

(InftoBeyond lechnology LL(})

Abstract

This document demonstrates access control test cases using Security Policy Tool, a software tool for
Access Control Security Managers, Policy Authors, and other IT Security Professionals specializing in the
performance of access control systems. Access control policies are designed to protect the accessibility of
online resources in networks, 10Ts, healthcare systems, financial service systems, enterprise IT and clouds,
military systems, and other online environments. There are several challenges in building robust access
control models for these systems including (i) effectively composing secure policies and rules, (ii) testing
these policies systematically, (iii) verifying these policies to prevent access control leaks. Security Policy
Tool solves these issues by providing powerful access control policy modeling, testing, and verification
features that empower organizations to close the door to access control leaks.

Index Terms

Access control, attribute-based access control (abac), role-based access control (rbac), security policy
editing, test, verification, deployment, access control leaks, XACML, software tool.

<+

1 INTRODUCTION TO TEST CASES

This document and attached Fecurity Policy Tool — Project Filed have been designed to help you
gain an understanding of what common access control errors look like, how they are created, and
how to resolve them. Organizations who leverage Security Policy Tool’s systematic modeling,
testing and verification features are empowered to efficiently identify errors and close the door
to access control leaks.

These Bank Policy test cases have been created by [nfoBeyond Technology LL{ to demonstrate
commonly found errors in access control policy design such as Leak Privilege, Block Privilege,
Inheritance Loop, Separation of Duty, and Inconsistent Assignment. These test cases consist of
policies/rules to better illustrate how Security Policy Tool enhances access control security. The
goal of these test cases is to provide a starting point for what to expect as you go on to use
Security Policy Tool to analyze your own policy verification results for errors.

2 SETTING UP THE PoLICIES — TEST CASE 1 (LEAK PRIVILEGE)

This bank example contains three policies (BankTeller Policy & LoanOfficer Policy & FManager
Policy). The Attribute /Attribute Values include in these policies are as shown in Figure [

o Contact us at: E-mail: Info@Securitypolicytool.com

Security Policy Tool (fvww.Securitypolicyfool.com) is a commercial version of NIST(National Institute of Standards and Technology)'s ACPT
(Access Control Policy Tool). With tremendous consultation with NIST experts, Security Policy Tool substantially enhances and expands the
NIST’s ACPT design with advanced features for achieving high security confidence access control levels such that it can be commercialized.
The development of Security Policy Tool is financially sponsored by NIST via a SBIR (Small Business Innovation Research) Phase I and
II programs. It specifically improves the NIST's ACPT design to provide a robust, unified, professional, and functionally powerful access
control policy tool.

www.InfoBeyondtech.com
https://securitypolicytool.com/Content/files/PolicyTestCases.zip
http://www.infobeyondtech.com
www.Securitypolicytool.com

WWW.SECURITYPOLICYTOOL.COM 2

File Project Help

B R & -F - i N O [P -8 -|BHB O -EF - = -
e @& B ANRa R @ @ & & |4 & B e=glo’
|=H BankTestcasespt €3
. BankTestCase!
!;s BankTestCasel spt 2]
- € Attribute attribute @ Srowsoutof 5
o & subject
el ' Type Total Attribute(s) Total Attribute Valuels)
B Bank Teller ; http:/fwaww.w3.0rg/2001/XMLSchema#string Subject 3 -
H Resource 2 g
: Action 1 3
. Environment o o
SUb ects Condition o o
=] Financial Manager; http://www w3.org/2001/XMLSchema#string
H manager
5@ LoanOfficer ; hitp://waw w3 org/2001/XMLSchemadstring
- officer_1 (e T > 2 rows out of 3
- @ officer_2
=} [&] Resource Type Mo of Baneficiarie(s)
H = = o
=@ Personalinfo ; http://www.w3.0rg/2001/XMLSchematistring Siectiaheritance
Resource Inheritance o
CustomerQne_Personalinfo
« @ CustomerTwo_Personalinfo IRESOUI’CES
- @ CustomerThree_Personalinfo
Ei: - @ Loaninfo ; http:/fwww.w3.0rg/2001/XMLSchema#string 2 .
Access Control Model ® Jrowsoutaf 3
- @ CustomerOns_Loan
CustomerTwo_Loan Type No of Policy(s)
= XActmn ABAC 3
4 Multilevel 0
@ BankActions ; http://www.w3.org/2001/XMLSchemad#string = I_V
Actions Workflow 0
Create
G ====
Approve
- @ View
- @ Ervironment o ee— i :
No Env"?!lment Security Requirement i b it
-4 Condition A No Conditions
- 7= Inheritance Type Mo of Pc
. Subject Inheritance Individual Security Reguirement 1
i Combinatorial Test Suite 0
i B2 Resource Inheritance
Individual Security Requirement o

Fig. 1. Test Case 1

3 MODELING YOUR PoLicYy — TEST CASE 1 (LEAK PRIVILEGE)

Now that we have entered our attributes we can model our three policies (BankTeller Policy
& LoanOfficer Policy & FManager Policy). See the list below of the rules contained in each of
these policies. You can open a “New (blank) Project” and build these policies by entering the
following rules below:

BankTeller Policy:

(Bank Teller = teller_1, CustomerOne_Personallnfo, Create) —Permit
(Bank Teller = teller_1, CustomerOne_Personallnfo, View) —Permit
(Bank Teller = teller_1, CustomerTwo_Personallnfo, Create) —Permit
(Bank Teller = teller_1, CustomerTwo_Personallnfo, View) —Permit
(Bank Teller = teller_1, CustomerThree_Personallnfo, Create) —Permit
(Bank Teller = teller_1, CustomerThree_Personallnfo, View) —Permit
(Bank Teller = teller_2, CustomerOne_Personallnfo, Create) —Permit
(Bank Teller = teller_2, CustomerOne_Personallnfo, View) —Permit
(Bank Teller = teller_2, CustomerTwo_Personallnfo, Create) —Permit
(Bank Teller = teller_2, CustomerTwo_Personallnfo, View) —Permit
(Bank Teller = teller_2, CustomerThree_Personallnfo, Create) —Permit
(Bank Teller = teller_2, CustomerThree_Personallnfo, View) —Permit
(Bank Teller = teller_3, CustomerOne_Personallnfo, Create) —Permit
(Bank Teller = teller_3, CustomerOne_Personallnfo, View) —Permit
(Bank Teller = teller_3, CustomerTwo_Personallnfo, Create) —Permit
(Bank Teller = teller_3, CustomerTwo_Personallnfo, View) —Permit
(Bank Teller = teller_3, CustomerThree_Personallnfo, Create) —Permit
(Bank Teller = teller_3, CustomerThree_Personallnfo, View) —Permit

WWW.SECURITYPOLICYTOOL.COM 3

(Bank Teller = teller_1, CustomerOne_Loan, View) —Permit
(Bank Teller = teller_1, CustomerTwo_Loan, View) —Permit
(Bank Teller = teller_2, CustomerOne_Loan, View) —Permit
(Bank Teller = teller_2, CustomerTwo_Loan, View) —Permit
(Bank Teller = teller_3, CustomerOne_Loan, View) —Permit
(Bank Teller = teller_3, CustomerTwo_Loan, View) —Permit
(Bank Teller = teller_1, CustomerOne_Loan, Approve) —Deny
(Bank Teller = teller_1, CustomerTwo_Loan, Approve) —Deny
(Bank Teller = teller_2, CustomerOne_Loan, Approve) —Deny
(Bank Teller = teller_2, CustomerTwo_Loan, Approve) —Permit
(Bank Teller = teller_3, CustomerOne_Loan, Approve) —Deny
(Bank Teller = teller_3, CustomerTwo_Loan, Approve) —Deny

LoanOfficer Policy:

(Loan Officer = officer_1, CustomerOne_Personallnfo, View) —Permit
(Loan Officer = officer_1, CustomerOne_Personallnfo, Create) —Permit
(Loan Officer = officer_1, CustomerTwo_Personallnfo, View) —Permit
(Loan Officer = officer_1, CustomerTwo_Personallnfo, Create) —Permit
(Loan Officer = officer_1, CustomerThree_Personallnfo, View) —Permit
(Loan Officer = officer_1, CustomerThree_Personallnfo, Create) —Permit
(Loan Officer = officer_1, CustomerOne_Loan, View) —Permit

(Loan Officer = officer_1, CustomerOne_Loan, Create) —Permit

(Loan Officer = officer_1, CustomerTwo_Loan, View) —Permit

(Loan Officer = officer_1, CustomerTwo_Loan, Create) —Permit

(Loan Officer = officer_2, CustomerOne_Personallnfo, View) —Permit
(Loan Officer = officer_2, CustomerOne_Personallnfo, Create) —Permit
(Loan Officer = officer_2, CustomerTwo_Personallnfo, View) —Permit
(Loan Officer = officer_2, CustomerTwo_Personallnfo, Create) —Permit
(Loan Officer = officer_2, CustomerThree_Personallnfo, View) —Permit
(Loan Officer = officer_2, CustomerThree_Personallnfo, Create) —Permit
(Loan Officer = officer_2, CustomerOne_Loan, View) —Permit

(Loan Officer = officer_2, CustomerOne_Loan, Create) —Permit

(Loan Officer = officer_2, CustomerTwo_Loan, View) —Permit

(Loan Officer = officer_2, CustomerTwo_Loan, Create) —Permit

(Loan Officer = officer_1, CustomerOne_Loan, Approve) —Deny

(Loan Officer = officer_1, CustomerTwo_Loan, Approve) —Deny

(Loan Officer = officer_2, CustomerOne_Loan, Approve) —Deny

(Loan Officer = officer_2, CustomerTwo_Loan, Approve) —Deny

FManager Policy:

(Manager = manager, CustomerOne_Personallnfo, Create) —Permit
(Manager = manager, CustomerOne_Personallnfo, View) —Permit
(Manager = manager, CustomerTwo_Personallnfo, Create) —Permit
(Manager = manager, CustomerTwo_Personallnfo, View) —Permit
(Manager = manager, CustomerThree_Personallnfo, Create) —Permit
(Manager = manager, CustomerThree_Personallnfo, View) —Permit
(Manager = manager, CustomerOne_Loan, Create) —Permit
(Manager = manager, CustomerOne_Loan, View) —Permit
(Manager = manager, CustomerTwo_Loan, Create) —Permit
(Manager = manager, CustomerTwo_Loan, View) —Permit
(Manager = manager, CustomerOne_Loan, Approve) —Permit
(Manager = manager, CustomerTwo_Loan, Approve) —Permit

After entering the rules above your modeled policies should look like the screenshots below. If
you did not create your own Project File, you can simply open Security Policy Tool — Project
File: BankTestCasel and these policies will have been already created for you.

WWW.SECURITYPOLICYTOOL.COM

BankTeller Policy Policy(s) Summary @ 1 rows out of 1 %_Search | 0 &
Model Policy Name Rulz Combination Algorithm Policy Enforcement Algorithm Mo. of Rule(s) Time Created Last Modified
ABAC BankTeller Policy Deny-overrides Deny Biased 30 July 3, 2018 14:28:32 July 3, 2018 14:28:32

Rule (s) defined with selected policy (BankTeller Palicy) <& 30 rows out of 30 } search ! ﬂ; lb

Sequence No Subject Resource Action Environment Condition Decision Inheritance Relation
1 Bank Teller =teller_1 Personalinfo = CustomerOne_Perzonalinfo BankActions = Create Permit Originated
2 Bank Teller =teller_1 Personalinfo = CustomerOne_Perzonalinfo BankActions = View Permit Originated
3 Bank Teller =teller_1 Personalinfo = CustomerTwo_Personalinfo BankActions = Create Permit Originated
4 Bank Teller = teller_1 Personalinfo = CustomerTwo_Personalinfo BankActions = View Permit Originated
5 Bank Teller = teller_1 Personalinfo = CustomerThree_Personalinfo BankActions = Create Permit Originated
<] Bank Teller =teller_1 Personalinfo = CustomerThree_Personalinfo BankActions = View Permit Originated
i Bank Teller =teller_2 personalinfo = CustomerOne_Personalinfo BankActions = Create Permit Originated
= Bank Teller =teller_2 Personalinfo = CustomerOne_Personalinfo BankActions = View Permit Originated
g Bank Teller =teller_2 Personalinfo = CustomerTwo_Perzonalinfo BankActions = Create Permit Originated
10 Bank Teller =teller_2 Personalinfo = CustomerTwo_Perzonalinfo BankActions = View Permit Originated
11 Bank Teller =teller_2 Personalinfo = CustomerThree_Personalinfo BankActions = Create Permit Originated
12 Bank Teller = teller_2 Personalinfo = CustomerThree_Personalinfo BankActions = View Permit Originated
13 Bank Teller =teller_3 Personalinfa = CustomerOne_Personalinfo BankActions = Create Permit Originated
14 Bank Teller =teller_3 Personalinfo = CustomerOne_Personalinfo BankActions = View Permit Originated
15 Bank Teller =teller_3 Personalinfo = CustomerTwo_Personalinfo BankActions = Create Permit Originated
16 Bank Teller =teller_3 Personalinfo = CustomerTwe_Personalinfo BankActions = View Permit Originated
17 Bank Teller =teller_3 Personalinfo = CustomerThree_Personalinfo BankActions = Create Permit Originated
18 Bank Teller =teller_3 Personalinfo = CustomerThree_Personalinfo BankActions = View Permit Originated
19 Bank Teller = teller_1 Loaninfo = CustomerOne_Loan BankActions = View Permit Originated
20 Bank Teller =teller_1 Loaninfo = CustomerTwo_Loan BankActions = View Permit Originated
21 Bank Teller =teller_2 Leaninfo = CustomerOne_Loan BankActions = View Permit Originated
22 Bank Teller =teller_2 Lozninfo = CustomerTwo_Loan BankActions = View Permit Originated
23 Bank Teller =teller_3 Lozninfo = CustomerOne_Loan BankActions = View Permit Originated
24 Bank Teller =teller_3 Loaninfo = CustomerTwo_Loan BankActions = View Permit Originated
25 Bank Teller = teller_1 Leaninfo = CustomerCOne_Loan BankActions = Approve Deny Originated
25 Bank Teller = teller_1 Loaninfa = CustomerTwo_Loan BankActicns = Approve Deny Originated
27 Bank Teller =teller_2 Loaninfo = CustomerOne_Loan BankActions = Approve Deny Originated
28 Bank Teller =teller_2 Loaninfo = CustomerTwo_Loan BankActions = Approve Permit Originated
28 Bank Teller =teller_3 Lozninfo = CustomerOne_Loan BankActions = Approve Deny Originated
30 Bank Teller =teller_3 Lozninfo = CustomerTwo_Loan BankActions = Approve Deny Originated

Fig. 2. BankTeller Policy

LoanOfficer Policy Policy(s) Summary <@® 1rowsoutofl | =l
Model Policy Name Rule Combination Algorithm Policy Enforcement Algorithm No. of Rule(s) Time Created Last Modified
ABAC LoanOfficer Policy Deny-overrides Deny Biased 24 July 3, 2018 14:40:46 July 3, 2018 14:40:46

Rule (s) definad with selected policy {LeanOfficer Policyi: @ 24 rows out of 24 } Search !

Sequence Mo Subject Resource Action Environment Condition Decision Inheritance Relation
1 LoanOfficer = officer_1 Personalinfo = CustomerQne_Personalinfo BankActions = View Permit Originated
2 LoanOfficer = officer_1 Personalinfo = CustomerQne_Personalinfo BankActions = Create Permit Originated
3 LoanOfficer = officer_1 Personalinfo = CustomerTwo_Personalinfo BankActions = View Permit Originated
4 LoanOfficer = officer_1 Personalinfo = CustomerTwo_Personalinfo BankActions = Create Permit Originated
5 LoanOfficer = officer_1 Personalinfo = CustomerThree_Personalinfo BankActions = View Permit Originated
6 LoanOfficer = officer_1 Perzonallnfo = CustomerThree_Personalinfo BankActions = Create Permit Originated
7 LoanOfficer = officer_1 Loaninfo = CustomerOne_Loan BankActions = View Permit Originated
8 LoanOfficer = officer_1 Loaninfo = CustomerOne_Loan BankActions = Create Permit Originated
9 LoanOfficer = officer_1 Loaninfo = CustomerTwo_Loan BankActions = View Permit Originated
10 LoanOfficer = officer_1 Loaninfo = CustomerTwo_Loan BankActions = Create Permit Originated
11 LoanOfficer = officer_2 Personalinfo = CustomerOne_Personalinfo BankActions = View Permit Originated
iz LoanOfficer = officer_2 Personalinfo = CustomerOne_Personalinfo BankActions = Create Permit Originated
13 LaanOfficer = officer_2 Personallnfe = CustomerTwo_Personalinfo BankActions = View Permit Originated
14 LoanOfficer = officer_2 Perscnalinfe = CustomerTwo_Personalinfo BankActions = Create Permit Originated
15 LoanOfficer = officer_2 Personalinfo = CustomerThree_Personalinfo BankActions = View Permit Originated
16 LoanOfficer = officer_2 Personalinfo = CustomerThree_Personallnfo BankActions = Create Permit Originated
17 LoanOfficer = officer_2 Loaninfo = CustomerQOne_Loan BankActions = View Permit Originated
18 LoanOfficer = officer_2 Loaninfo = CustomerOne_Loan BankActions = Create Permit Originated
19 LoanOfficer = officer_2 Loaninfo = CustomerTwo_Loan BankActions = View Permit Originated
20 LoanOfficer = officer_2 Loaninfo = CustomerTwo_Loan BankActions = Create Permit Originated
21 LoanOfficer = officer_1 Loaninfo = CustomerOne_Loan BankActions = Approve Deny Originated
32 LoanOfficer = officer_1 Loaninfo = CustomerTwo_Loan BankActions = Approve Deny Originated
25 LoanOfficer = officer_2 Loaninfo = CustomerOne_Loan BankActions = Approve Deny Originated
24 LoanOfficer = officer_2 Loaninfo = CustomerTwo_Loan BankActions = Approve Deny Originated

Fig. 3. LoanOfficer Policy

Fiianager Policy Palicy(s) Summary @ 1 rows out of 1 sesich)
Model Policy Name Rule Combination Algorithm Policy Enforcement Algorithm No. of Rule(s) Time Created Last Medified
ABAC Fivianager Policy Permit-gverrides Permit Biased 12 July 3, 2018 15:.03.03 July 3, 2018 15:03.03
Rule (5] defined with selected policy (FManager Policy) @ 12 rows out of 12 Search =l

Sequence Mo Subject Resource Action Environment Condition Decision Inheritance Relation
1 Financial Manager = manager Personazlinfo = CustomerOne_Personalinfo BankActions = Create Permit Originated
2 Financial Manager = manager Personalinfo = CustomerOne_Personalinfo BankActions = View Permit Originated
3 Financial Manager = manager Personalinfo = CustomerTwo_Personalinfo BankActions = Create Permit Originated
4 Financial Manager = manager Personalinfo = CustomerTwo_Persanalinfo BankActions = View Permit Originated
5 Financial Manager = manager Perscnalinfo = CustomerThres_Personalinfo BankActions = Create Permit Originated
& Financial Manager = manager Personalinfo = CustomerThree_Personalinfo BankActions = View Permit Originated
7 Financial Manager = manager Loaninfo = CustomerOne_Loan BankActions = Create Permit Originated
8 Financial Manager = manager Loaninfo = CustomerOne_Loan BankActions = View Permit Originated
9 Financial Manager = manager Loaninfo = CustomerTwo_Loan BankActions = Create Permit Originated
10 Financial Manager = manager Loaninfo = CustomerTwe_Loan BankActions = View Permit Originated
11 Financial Manager = manager Loaninfo = CustomerOne_Loan BankActions = Approve Permit Originated
12 Financial Manager = manager Loaninfa = CustomerTwe_Loan BankActions = Approve Permit Originated

Fig. 4. FManager Policy

4 INDIVIDUAL SECURITY REQUIREMENTS - TEST CASE 1 (LEAK PRIVILEGE)

The final step before analyzing these policies for errors is to create individual security require-
ments to use for testing. If you are building a “New (blank) Project” on your own you will enter
the security requirements as follows.

Individual Security Requirements:
(BankTeller = teller_1) & (Action = Approve) & (LoanInfo = CustomerOne_Loan) — decision = Permit
(BankTeller = teller_1) & (Action = Approve) & (LoanInfo = CustomerTwo_Loan) — decision = Permit
(BankTeller = teller_2) & (Action = Approve) & (LoanInfo = CustomerOne_Loan) — decision = Permit
(BankTeller = teller_2) & (Action = Approve) & (LoanInfo = CustomerTwo_Loan) — decision = Permit
(BankTeller = teller_3) & (Action = Approve) & (LoanInfo = CustomerOne_Loan) — decision = Permit
(BankTeller = teller_3) & (Action = Approve) & (LoanInfo = CustomerTwo_Loan) — decision = Permit

After entering the rules above your individual security requirements should look like the screen-
shot below. If you did not create your own Project File you can simply open Security Policy Tool
— Project File: BankTestCasel and these requirements will have been already created for you.

Test Case 1(s) Summary @ 1rowsoutofl Search ag |E|
Access Control Security Requirement Requirement Schema Mo. of Security Requirement(s)
Individual Test Case 1 6
Security Requirement (<) defined under selected Requirement Schema (Test Caze 1) <® & rows out of 6 Search <=l
Sequence No Subject Resource Action Environment Condition Decision
1 Bank Teller =teller_1 Loaninfo = CustomerOne_Loan BankActions = Approve Permit
b Bank Tell eller_1 Loaninfo = CustomerTwo_Loan BankActions = Approve Permit
3 Bank Teller = teller_2 Loaninfo = CustomerOne_Loan BankActions = Approve Permit
4 Bank Teller = teller_2 Loaninfo = CustomerTwo_Loan BankActicns = Approve Permit
5 Bank Teller = teller_3 Loaninfo = CustomerOne_Loan BankActions = Approve Permit
E Bank Teller =teller_3 Loaninfo = CustomerTwa_Loan BankActions = Approve Permit

Fig. 5. Individual Security Requirements

5 PoLicY VERIFICATION/ANALYZING RESULTS - TEST CASE 1 (LEAK PRIVILEGE)

Now that we are ready to test our policies let’s discuss the error we will be looking at in this first
example. When policies are designed, there is potential for a “Leak Privilege” being created. A
Leak Privilege occurs when a flaw in your policy logic is authorizing a subject to take an action

WWW.SECURITYPOLICYTOOL.COM 6

you did not intend for them to take. This error can occur due to a mistaken privilege assignment
directly or careless privilege inheritance indirectly as well.

In our example, an individual at this bank has been assigned a role of Bank Teller = teller 2 at
the facility. We have designed several rules in the BankTeller Policy, a few of which specifying
Bank Teller subjects are unable to Approve any LoanInfo resources. In this test case, we are
going to verify that this is true.

We will run one “Single Policy” Verification to reveal if their is a Leak Privilege present in our
policies. To do this, we will right-click Model Verification and select New Policy Verification. Then
we will choose Test Case 1 (security requirement), BankTeller Policy, Single Verification and select
run. Again, this will have already been done for you if you open Project File: BankTestCasel.

Policy Verification (July 3, 2018 15:29:39)(s) Summary ®> 1rowsoutofl Search u; [}
Status Mame Verification Type verification Technigue Mumber of Pol Combination Algorithm Enforcement Algorithm Policy List
UpToDate Policy Verification (luly 3, 2048 15.29:39) Standard Single Policy T Deny-overrides Deny Biased ABAC:BankTeller Policy

Result(s) with selected verification (Policy Verification (luly 3, 2018 15:22:30)) @ 6 rows out of 6 Search I
Requirement Schema Subject Resource Environment Condition Decision Verification Result
TestCase 1 Bank Teller=teller_1 Loaninfo = CustomerOne_Loan Permit FALSE
Test Case 1 Bank Teller=teller_1 Loaninfo = CustomerTwo_Loan BankActions = Parmit FALSE
TestCase 1 Bank Teller =teller_2 Loaninfo = CustomerOne_Loan BankActions = Permit FALSE
Test Case 1 Bank Teller=teller_2 Loaninfo = CustomerTwo_Loan BankActions =Approve | Erulromment=Any Valus | Condition Permit TRUE
Test Case 1 Bank Teller=teller_3 Loaninfo = CustomerOne_Loan BankActions = A Permit FALSE
TestCase 1 Bank Teller=teller_3 Loaninfo = CustomerTwo_Loan BankActions = A Permit FALSE

Fig. 6. BankTeller Policy x Test Case 1

As you can see from our verification results our BankTeller Policy is generating a True result for
Security Requirement (4) thus Permitting (Bank Teller = teller_2) to approve CustomerTwo_LoanInfo
which is known as a Leak Privilege error.

6 RESOLVING THIS ERROR - TEST CASE 1 (LEAK PRIVILEGE)

To solve a Leak Privilege the policy author would need to go back and either update or delete
the related rule that is creating this error. To view which specific Rules are resulting in these
Verification Results we can click on all (6) of our specific Results (False; False; False; True; False;
False) and see which Rules have “Match Results”. Since we are already aware of which Result
is incorrect let’s take a look at it.

See the screenshots below of our Policy Match Results to discover which specific rule is related
to our unintended Verification Result (e.g., Permit = True).

WWW.SECURITYPOLICYTOOL.COM 7

Result(s) with selected verification (Policy Werification {July 3, 2018 15:29:38])) <@ 6 rows outof Search =l
Requirement Schema Subject Resource Action Environment Condition Decision Verification Result
Test Case 1 Bank Teller = teller_1 Loaninfo = CustomerOne_Loan BankActions = Approve BN es Aty Viallie = A Vi Permit FALSE
Test Case 1 Bank Teller =teller_1 Lean|nfo = CustomerTwo_Loan BankActions = Approve Permit FALSE
Test Case 1 Bank Teller = teller_2 Loaninfo = CustomerOne_Loan BankActions = Approve Permit FALSE
Test Case 1 Bank Teller =teller_2 Loaninfo = CustomerTwo_Loan BankActions = Approve Permit TRUE
Test Case 1 Bank Teller =teller_3 Leaninfo = CustomerOne_Loan BankActions = Approve Permit FALSE
Test Case 1 Bank Teller =teller 3 Loaninfo = CustomerTwo_Loan BankActions = Approve Permit EALSE
Policy(s) and Matching result against the selcted security requirement: @ 1 rowsoutof 1 search [
Policy Mame Rule Combinaticn Algorithm Policy Enforcement Algorithm Combined Result
ABAC : BankTeller Palicy Deny-overrides Deny Biased Permit
Rule(s) and Matching result of Selected Policy against the selcted security requirement @ 30 rows out of 30 search [<ER]
Seguence No Subject Resgurce Action Envirgnment Condition Decision Inheritance Relation Match Result
18 Bank Teller =teller_3 Personalinfo = CustomerThree_Personalinfo BankActions = View Permit Originated Naot Applicable
19 Loan|nfe = CustomerOne_Loan BankActions = View Permit Originated Not Applicable
20 Loanlnfa = CustomerTwo_Loan BankActions = View Permit Originated Not Applicable
21 e Loaninfo = CustomerOne_Loan BankActions = View Permit Originated Not Applicable
22 Bank Teller = teller_2 Loaninfo = CustomerTwo_Loan BankActions = View Permit Originated Not Applicable
23 Bank Teller =teller_3 Loaninfo = CustomerOne_Loan BankActions = Wiew Permit Originated Not Applicable
24 Bank Teller =teller_3 Loaninfo = CustomerTwo_Loan BankActions = View Permit Originated Not Applicable
25 Bank Teller =teller_1 Loaninfo = CustomerOne_Loan BankActions = Approve Deny Originated Not Applicable
26 Bank Teller = teller_1 Loaninfa = CustomerTwo_Loan BankActions = Approve Deny Originated Not Applicable
27 Bank Teller =teller_2 Loaninfo = CustomerOne_Loan BankActions = Approve Deny Originated Not Applicable
28 Bank Teller = teller_2 Loanlnfe = CustomerTwo_Loan BankActions = Approve Permit Originated Permit
20 Bank Teller = teller_3 Loaninfe = CustomerOne_Loan BankActions = Approve s . Conditio 3 Deny Originated Not Applicable
30 Bank Teller = teller_3 Loanlnfo = CustomerTwo_Loan BankActions = Approve B TN alue Condition = Any Value Deny Originated Not Applicable

Fig. 7. BankTeller Policy: Match Results

Now that we have pinpointed our rule related to our Leak Privilege Error we can go back
and make changes or possibly remove this rule. Depending on your organizational structure the
policy author or access control administrator would need to decide what is the most appropriate
action to take to resolve the error. There is no “right” or “wrong” solution for this, you would
need to determine what is most appropriate based on your organizational needs.

For our example, we are going to modify Rule 28 in the BankTeller Policy to Deny “BankTeller
= teller_2” to Approve CustomerTwo_Loan which will in turn resolve the Leak Privilege. For
this example, we are fixing our mistake in unintentionally selecting Permit for this individual
(teller_2) to be able to Approve the resource.

BankTeller Policy: Modify (28) Rule:

(Rule No. = 28) — (Bank Teller = teller_2) — (Action = Approve) —(Resource = CustomerTwo_Loan)
— decision = Deny

28 Bank Teller = teller_2 Loaninfo = CustomerTwo_Loan BankActions = Approve Ervironmant = 4ny Walus gandition’= Any Valus Deny Originated

Fig. 8. BankTeller Policy: Modified Rule (28)

Which then when we “Refresh” our previous Verification Results we no longer have a Leak
Privilege occurring:

Pelicy Verification (July 4, 2018 18:52:30)(s) Summary @ 1rowsoutof1 | Search HE]
Status Mame Verification Type Verification Technique Mumber of Policy(s) Combination Algorithm Enforcement Algorithm Policy List
UpToDate Policy Verification (July 4, 2018 18:51:30) Standard Single Policy 1 Deny-overrides Deny Biased ABAC:BankTeller Policy
Result(s) with selected verification [Policy Verification (luly 4, 2018 18:51:30)) @ 6 rows out of & search u§ (=]
Requirement Schema Subject Resource Action Environment Condition Decision verification Result
TestCase 1 Bank Teller = teller_1 Leaninfo = CustomerOne_Loan BankActions = Approve o Permit FALSE
Test Case 1 Bank Teller = teller_1 Leaninfo = CustomerTwo_Loan BankActions = Approve o Permit FALSE
Test Case 1 Bank Teller = teller_2 Leaninfo = CustomerOne_Loan BankActions = Approve o Permit FALSE
Test Case 1 Bank Teller = teller_2 Loaninfo = CustomerTwo_Loan BankActions = Approve Permit FALSE
Test Case 1 Bank Teller = teller_3 Leaninfo = CustomerOne_Loan BankActicns = Approve Permit FALSE
Test Case 1 Bank Teller = teller_3 Loaninfo = CustomerTwo_Loan BankActions = Approve Permit FALSE

Fig. 9. Updated Results: BankTeller Policy (No Leak Privilege)

7 SETTING UP THE POLICIES — TEST CASE 2 (BLOCK PRIVILEGE)

This bank example contains three policies (BankTeller Policy & LoanOfficer Policy & FManager
Policy). The attributes in this example have not been changed from previous Test Case 1. The
Attribute/ Attribute Values included in these policies are as shown in Figure M.

File Project Help
: 2 .E - 3 -y =& o A o = % [— =
& &b anla R -® - & & A & B =Rlo
[=9 BankTestCases spt @
| Search BankTestCase2
~
Attribute @ 5 rows outof 5
£+ Subject Type Total Attribute(s) Total Attribute Value(s)
E| @ Bank Teller; hitp://www.w3.0rg/2001/XNMLSchema#string subject 3 5
- teller_1 Resource 2 5
" Action 1 El
teller.2 Environment a a
9 teller_3 - Condition] a
: - Subjects
1@ Financial Manager ; http://www.w3.0rg/2001/XMLSchematstring %
L@ manager
@ LoanOfficer ; http://www.w3 org/2001/XMLSchemasistring
i officer_1 Inheritance <@ 2 rows outof 2
9 officer_2
= Type Mo of Beneficiarie(s)
= Resource
3 Subject Inheritance 1]
@ Personalinfo ; hitp://www.w3 org/2001/XMLSchematistring e — 5
CustomerQne_Personalinfa
CustomerTwo_Personalinfo Resources
@ CustomerThree_Personalinfo l
Loaninfo ; http://www.w3.0rg/2001/XMLSchema#string RS @ 3 rows out of 3
CustomerQOne_Loan
9 CustomerTwo_Loan Typs Mo of Policyls]
- Action ABAC 2
; Multilevel o
- @ BankActions ; hitpy//www.w3.org/2001/XMLSchema#string Wokion 0
; Actions
Create I
: -~
i@ Approve
2 View
~@E T o — : 3 rows outoh3
@ environmen No Environment Security Requirement @ 3rowsoutof 3
O NN o — iti
No Conditions - ;
= Inheritance hipe Naof Pol
_._i; Subject Inheritance Individual Security Requirement 1
Combinatorial Test Suite 0
'~ gig Resource Inheritance Individual Security Reguirement 0

Fig. 10. Test Case 2

8 MODELING YOUR PoLicYy — TEST CASE 2 (BLOCK PRIVILEGE)

Now that we have entered our attributes we can model our three policies (BankTeller Policy
& LoanOfficer Policy & FManager Policy). See the list below of the rules contained in each of

WWW.SECURITYPOLICYTOOL.COM 9

these policies. You can open a “New (blank) Project” and build these policies by entering the
following rules below:

BankTeller Policy:

(Bank Teller = teller_1, CustomerOne_Personallnfo, Create) —Permit
(Bank Teller = teller_1, CustomerOne_Personallnfo, View) —Permit
(Bank Teller = teller_1, CustomerTwo_Personallnfo, Create) —Permit
(Bank Teller = teller_1, CustomerTwo_Personallnfo, View) —Permit
(Bank Teller = teller_1, CustomerThree_Personallnfo, Create) —Permit
(Bank Teller = teller_1, CustomerThree_Personallnfo, View) —Permit
(Bank Teller = teller_2, CustomerOne_Personallnfo, Create) —Permit
(Bank Teller = teller_2, CustomerOne_Personallnfo, View) —Permit
(Bank Teller = teller_2, CustomerTwo_Personallnfo, Create) —Permit
(Bank Teller = teller_2, CustomerTwo_Personallnfo, View) —Permit
(Bank Teller = teller_2, CustomerThree_Personallnfo, Create) —Permit
(Bank Teller = teller_2, CustomerThree_Personallnfo, View) —Permit
(Bank Teller = teller_3, CustomerOne_Personallnfo, Create) —Permit
(Bank Teller = teller_3, CustomerOne_Personallnfo, View) —Permit
(Bank Teller = teller_3, CustomerTwo_Personallnfo, Create) —Permit
(Bank Teller = teller_3, CustomerTwo_Personallnfo, View) —Permit
(Bank Teller = teller_3, CustomerThree_Personallnfo, Create) —Permit
(Bank Teller = teller_3, CustomerThree_Personallnfo, View) —Permit
(Bank Teller = teller_1, CustomerOne_Loan, View) —Permit

(Bank Teller = teller_1, CustomerTwo_Loan, View) —Permit

(Bank Teller = teller_2, CustomerOne_Loan, View) —Permit

(Bank Teller = teller_2, CustomerTwo_Loan, View) —Permit

(Bank Teller = teller_3, CustomerOne_Loan, View) —Permit

(Bank Teller = teller_3, CustomerTwo_Loan, View) —Permit

(Bank Teller = teller_1, CustomerOne_Loan, Approve) —Deny

(Bank Teller = teller_1, CustomerTwo_Loan, Approve) —Deny
(Bank Teller = teller_2, CustomerOne_Loan, Approve) —Deny

(Bank Teller = teller_2, CustomerTwo_Loan, Approve) —Deny
(Bank Teller = teller_3, CustomerOne_Loan, Approve) —Deny

(Bank Teller = teller_3, CustomerTwo_Loan, Approve) —Deny

LoanOfficer Policy:

(Loan Officer = officer_1, CustomerOne_Personallnfo, View) —Permit
(Loan Officer = officer_1, CustomerOne_Personallnfo, Create) —Permit
(Loan Officer = officer_1, CustomerTwo_Personallnfo, View) —Permit
(Loan Officer = officer_1, CustomerTwo_Personallnfo, Create) —Permit
(Loan Officer = officer_1, CustomerThree_Personallnfo, View) —Permit
(Loan Officer = officer_1, CustomerThree_Personallnfo, Create) —Permit
(Loan Officer = officer_1, CustomerOne_Loan, View) —Permit

(Loan Officer = officer_1, CustomerOne_Loan, Create) —Permit

(Loan Officer = officer_1, CustomerTwo_Loan, View) —Deny

(Loan Officer = officer_1, CustomerTwo_Loan, Create) —Permit

(Loan Officer = officer_2, CustomerOne_Personallnfo, View) —Permit
(Loan Officer = officer_2, CustomerOne_Personallnfo, Create) —Permit
(Loan Officer = officer_2, CustomerTwo_Personallnfo, View) —Permit
(Loan Officer = officer_2, CustomerTwo_Personallnfo, Create) —Permit
(Loan Officer = officer_2, CustomerThree_Personallnfo, View) —Permit
(Loan Officer = officer_2, CustomerThree_Personallnfo, Create) —Permit
(Loan Officer = officer_2, CustomerOne_Loan, View) —Permit

(Loan Officer = officer_2, CustomerOne_Loan, Create) —Permit

(Loan Officer = officer_2, CustomerTwo_Loan, View) —Permit

(Loan Officer = officer_2, CustomerTwo_Loan, Create) —Permit

(Loan Officer = officer_1, CustomerOne_Loan, Approve) —Deny

(Loan Officer = officer_1, CustomerTwo_Loan, Approve) —Deny
(Loan Officer = officer_2, CustomerOne_Loan, Approve) —Deny

(Loan Officer = officer_2, CustomerTwo_Loan, Approve) —Deny

FManager Policy:

(Manager = manager, CustomerOne_Personallnfo, Create) —Permit
(Manager = manager, CustomerOne_Personallnfo, View) —Permit
(Manager = manager, CustomerTwo_Personallnfo, Create) —Permit
(Manager = manager, CustomerTwo_Personallnfo, View) —Permit

WWW.SECURITYPOLICYTOOL.COM 10

(Manager = manager, CustomerThree_Personallnfo, Create) —Permit
(Manager = manager, CustomerThree_Personallnfo, View) —Permit
(Manager = manager, CustomerOne_Loan, Create) —Permit
(Manager = manager, CustomerOne_Loan, View) —Permit

(Manager = manager, CustomerTwo_Loan, Create) —Permit
(Manager = manager, CustomerTwo_Loan, View) —Permit
(Manager = manager, CustomerOne_Loan, Approve) —Permit
(Manager = manager, CustomerTwo_Loan, Approve) —Permit

After entering the rules above your modeled policies should look like the screenshots below. If
you did not create your own Project File, you can simply open Security Policy Tool — Project
File: BankTestCase2 and these policies will have been already created for you.

BankTeller Policy Policy(s) Summary @ 1 rows out of 1 search 0 &
Model Policy Name Rule Combination Algorithm Policy Enforcement Algorithm Mo. of Rule(s) Time Created Last Modified
ABAC BankTeller Policy Deny-overrides Deny Biased 30 July 3, 2018 14:28:32 July 3, 2018 14:28:32

Rule (s) defined with selected policy (BankTeller Palicy) <& 30 rows out of 30 | search | ﬂ; |ﬁ'|

Sequence No Subject Resource Action Environment Condition Decision Inheritance Relation
1 Bank Teller =teller_1 Personalinfo = CustomerOne_Perzonalinfo BankActions = Create Permit Originated
2 Bank Teller =teller_1 Personalinfo = CustomerOne_Perzonalinfo BankActions = View Permit Originated
3 Bank Teller = teller_1 Personalinfo = CustomerTwe_Personalinfo BankActions = Create Permit Originated
4 Bank Teller = teller_1 Personalinfo = CustomerTwo_Personalinfo BankActions = View Permit Originated
5 Bank Teller = teller_1 Personalinfo = CustomerThree_Personalinfo BankActions = Create Permit Originated
[Bank Teller =teller_1 Personalinfo = CustomerThree_Personalinfo BankActions = View Permit Originated
7 Bank Teller =teller_2 Personalinfo = CustomerOne_Personalinfo BankActions = Create Permit Originated
:} Bank Teller =teller_2 Personallnfo = CustomerOne_Personalinfo BankActions = View Permit Originated
g Bank Teller =teller_2 Personalinfo = CustomerTwo_Personalinfo BankActions = Create Permit Originated
10 Bank Teller =teller_2 Personalinfo = CustomerTwe_Personalinfo BankActions = View Permit Originated
11 Bank Teller = teller_2 Personalinfo = CustomerThree_Personalinfo BankActions = Create Permit Originated
12 Bank Teller = teller_2 Personalinfo = CustomerThree_Personalinfo BankActions = View Permit Originated
13 Bank Teller =teller_3 Personalinfo = CustomerOne_Personalinfo BankActions = Create Permit Originated
14 Bank Teller =teller_3 Personalinfo = CustomerOne_Personalinfo BankActions = View Permit Originated
15 Bank Teller =teller_3 Personalinfo = CustomerTwo_Personalinfo BankActions = Create Permit Originated
i6 Bank Teller =teller_3 Personallnfo = CustomerTwo_Personalinfo BankActions = View Permit Originated
17 Bank Teller = teller_3 Persenalinfo = CustomerThree_Personalinfo BankActions = Create Permit Originated
18 Bank Teller = teller_3 Personalinfo = CustomerThree_Personalinfo BankActions = View Permit Originated
19 Bank Teller = teller_1 Loaninfo = CustomerOne_Loan BankActions = View Permit Originated
20 Bank Teller =teller_1 Loaninfo = CustemerTwo_Loan BankActions = View Permit Originated
21 Bank Teller =teller_2 Lozninfo = CustomerOne_Loan BankActions = View Permit Originated
22 Bank Teller =teller_2 Lozninfo = CustomerTwo_Loan BankActions = View Permit Originated
a3 Bank Teller =teller_3 Loaninfo = CustomerCne_Loan BankActions = View Permit Originated
24 Bank Teller =teller_3 Leaninfo = CustomerTwo_Loan BankActicns = View Permit Originated
35 Bank Teller = teller_1 Loaninfa = CustomerOne_Loan BankActions = Approve Deny Originated
25 Bank Teller = teller_1 Loaninfa = CustomerTwo_Loan BankActicns = Approve Deny Originated
27 Bank Teller =teller_2 Loaninfo = CustomerOne_Loan BankActions = Approve Deny Originated
28 Bank Teller =teller_2 Lozninfo = CustomerTwo_Loan BankActions = Approve Deny Originated
28 Bank Teller =teller_3 Lozninfo = CustomerOne_Loan BankActions = Approve Deny Originated
30 Bank Teller =teller_3 Loaninfo = CustomerTwo_Loan BankActions = Approve Deny Originated

Fig. 11. BankTeller Policy

WWW.SECURITYPOLICYTOOL.COM

11

LoanOfficer Policy Policyls) Summary @ 1 rows out of 1 | Search EE 'El
Madel Policy Name Rule Combination Algorithm Palicy Enforcement Algorithm Ne. of Rule(s) Time Created Last Modified
ABAC LoanOfficer Policy Deny-overrides Deny Biased 24 July 3, 2018 14:40:46 July 3, 2018 14:40:46
Rule (s) defined with selected policy {LoanOfficer Policy: ® 24 rows out of 24 | Search | ﬂa |a‘|
Sequence No Subject Resource Action Environment Condition Decision Inheritance Relation
1 LoanOfficer = officer_1 Personallnfo = CustomerQne_Personalinfo BankActions = View Permit Originated
2 LoanOfficer = officer_1 Perzonalinfo = CustomerOne_Personalinfo BankActions = Create Permit Originated
3 LoanOfficer = officer_1 Personalinfo = CustomerTwo_Personalinfo BankActions = View Permit Originated
4 LoanOfficer = officer_1 Personalinfo = CustomerTwo_Personalinfo BankActions = Create Permit Originated
5 LoanOfficer = officer_1 Personalinfo = CustomerThree_Personalinfo BankActions = View Permit Originated
6 LoanOfficer = officer_1 Personallnfo = CustomerThree_Personalinfo BankActions = Create Permit Originated
7 LoanOfficer = officer_1 Loaninfo = CustomerOne_Loan BankActions = View Permit Originated
8 LoanOfficer = offi 1 Loaninfo = CustomerOne_Loan BankActions = Create Permit Originated
9 LoanOfficer = officer_1 Loaninfo = CustomerTwo_Loan BankActions = View Deny Originated
10 LoanOfficer = officer_1 Loaninfo = CustomerTwo_Loan BankActions = Create Permit Originated
11 LoanOfficer = officer_2 Personalinfo = CustomerOne_Personzlinfo BankActions = View Permit Originated
iz LoanOfficer = officer_2 Personalinfo = CustomerOne_Personalinfo BankActions = Create Permit Originated
13 LaoanOfficer = officer_2 Personallnfe = CustomerTwo_Personalinfo BankActions = View Permit Originated
14 LoanOfficer = officer_2 Personalinfo = CustomerTwo_Personalinfo BankActions = Create Permit Originated
15 LoanOfficer = officer_2 Personalinfo = CustomerThree_Personalinfo BankActions = View Permit Originated
16 LoanOfficer = officer_2 Personalinfo = CustomerThree_Personalinfo BankActions = Create Permit Originated
17 LoanOfficer = officer_2 Loaninfo = CustomerOne_Loan BankActions = View Permit Originated
18 LoanOfficer = officer_2 Loaninfo = CustomerOne_Loan BankActions = Create Permit Originated
19 LoanOfficer = officer_2 Loaninfo = CustomerTwo_Loan BankActions = View Permit Originated
20 LoanOfficer = officer_2 Loaninfo = CustomerTwo_Loan BankActions = Create Permit Originated
21 LoanOfficer = officer_1 Loaninfo = CustomerOne_Loan BankActions = Approve Deny Originated
22 LoanDfficer = officer_1 Loaninfo = CustomerTwo_Loan BankActions = Approve Deny Originated
23 LoanOfficer = officer_2 Loaninfo = CustomerQne_Loan BankActions = Approve Deny Originated
24 LoanOfficer = officer_2 Loaninfo = CustomerTwo_Loan BankActions = Approve Deny Originated
Fig. 12. LoanOfficer Policy
Fianager Policy Policy(s) Summary @ 1rowsoutofl KSearch ﬂ; l‘El
Madel Policy Name Rule Combination Algarithm Palicy Enforcement Algorithm Ne. of Rulels) Time Created Last Modified
ABAC Flvanager Policy Permit-overrides Permit Biased 12 July 3, 2018 15:03:03 July 3, 2018 15:03:03
Rule (s) defined with selected policy (FManager Policy) @ 12 rows out of 12 | Search | =]
Seguence No Subject Resource Action Environment Condition Decision Inheritance Relation
1 Financial Manager = manager Personalinfo = CustomerOne_Personalinfo BankActions = Create En Permit Originated
2 Financial Manager = manager Personalinfo = CustomerOne_Personalinfo BankActions = View En Permit Originated
3 Financial Manager = manager Personzlinfo = CustomerTwo_Personalinfo BankActions = Create £ Permit Originated
4 Financial Manager = manager Personzlinfo = CustomerTwo_Personalinfo BankActions = View En Permit Originated
5 Financial Manager = manager Personalinfo = CustomerThree_Personalinfo BankActions = Create E Permit Originated
6 Financial Manager = manager Personalinfo = CustomerThree_Personalinfo BankActions = View E Permit Originated
7 Financial Manager = manager Loaninfa = CustomerOne_Loan BankActions = Create c Permit Originated
g Financial Manager = manager Loaninfa = CustomerOne_Loan BankActions = View : Permit Originated
9 Financial Manager = manager Loaninfo = CustomerTwe_Loan BankActions = Create En Permit Originated
10 Financial Manager = manager Loaninfo = CustomerTwo_Loan BankActions = View En Permit Originated
11 Financial Manager = manager Loaninfo = CustomerOne_Loan BankActions = Approve En Permit Originated
12 Financial Manager = manager Loaninfo = CustomerTwo_Loan BankActions = Approve En Permit Originated

Fig. 13. FManager Policy

9 INDIVIDUAL SECURITY REQUIREMENT - TEST CASE 2 (BLOCK PRIVILEGE)

The final step before analyzing these policies for errors is to create individual security require-
ments to use for testing. If you are building a “New (blank) Project” on your own you will enter
the following security requirements below:

Individual Security Requirements:
(Loan Officer = officer_1) & (Action = Create) & (LoanInfo = CustomerOne_Loan) — decision = Permit

(Loan Officer
(Loan Officer
(Loan Officer
(Loan Officer

officer_1) & (Action
officer_1) & (Action
officer_1) & (Action
officer_2) & (Action

View) & (LoanInfo = CustomerOne_Loan) — decision = Permit
Create) & (LoanInfo = CustomerTwo_Loan) — decision = Permit
View) & (LoanInfo = CustomerTwo_Loan) — decision = Permit
Create) & (LoanInfo = CustomerOne_Loan) — decision = Permit

WWW.SECURITYPOLICYTOOL.COM 12

(Loan Officer = officer_2) & (Action = View) & (LoanInfo = CustomerOne_Loan) — decision = Permit
(Loan Officer = officer_2) & (Action = Create) & (LoanInfo = CustomerTwo_Loan) — decision = Permit

(Loan Officer = officer_2) & (Action = View) & (LoanInfo = CustomerTwo_Loan) — decision = Permit
After entering the rules above your individual security requirements should look like the screen-

shot below. If you did not create your own Project File you can simply open Security Policy Tool
— Project File: BankTestCase2 and these requirements will have been already created for you.

Test Case 2(s) Summary @ 1rowsoutofl Search aﬂ (]
Access Control Security Requirement Reguirement Schema Mo. of Security Requirement(s)
Individual Test Case 2 8
Security Requirement (s) defined under selected Requirement Schema (Test Case 2) ® 8 rows out of 8 Search =l
Sequence No Subject Resource Action Environment Condition Decision
1 LoanOfficer = officer_1 Loaninfo = CustomerOne_Loan BankActions = Create Environme : cond Any Valus Permit
b LoanOfficer = officer_: Leaninfo = CustomerCOne_Loan BankActiol Permit
3 LoanOfficer = off £ Loaninfo = CustomerTwo_Loan BankAction: Permit
4 LoanOfficer = officer_1 Loaninfo = CustomerTwo_Loan BankActio Permit
LoanOfficer = officer_2 Loaninfo = CustomerOne_Loan BankActions Permit
[LoanOfficer = officer_2 Leaninfo = CustomerOne_Loan BankActions = Permit
7 LeanOfficer = officer_2 Loaninfo = CustomerTwo_Loan BankActions = Create Emvironmant = & e Condition = A = Permit
8 LoanOfficer = officer_2 Loaninfo = CustomerTwo_Loan BankActions = View Ervironment = Ary Valus adition = Any Valus Permit

Fig. 14. Individual Security Requirement

10 PoLicYy VERIFICATION/ANALYZING RESULTS - TEST CASE 2 (BLOCK PRIVI-
LEGE)

Now that we are ready to test our policies let’s discuss the error we will be looking at in this
second example. When policies are designed there is potential for a “Block Privilege” error being
created. A Block Privilege error occurs when policy rules are blocking a subject’s legitimate access
to rightful resources. A Block Privilege is created when a policy cannot render a grant or deny
decision, no available logic in the AC policy algorithm for evaluating the access request, or by
mistaken privilege assignment directly.

For example, when the policy author was designing the logic for these bank policies; the author
intended all LoanOfficers to be able to Create all LoanInfo resources. However, to be able to
Create all LoanInfo resources, LoanOfficers also need to be able to View all LoanInfo resources.
To ensure the policy has been designed correctly let’s verify that this is true (e.g., LoanOfficer
— View or Create — LoanInfo Resources).

We will run one “Merged Policy” Verification with all three of our policies to reveal the Block
Privilege error that is present in our policies. To do this, we will select Test Case 2 (security
requirement) and BankTeller Policy & LoanOfficer Policy & FManager Policy as a Merged Policy
Verification and analyze our verification result. Again, this will have already been done for you
if you open Project File: BankTestCase2.

WWW.SECURITYPOLICYTOOL.COM 13

Policy Verification (July 3, 2018 16:16:57)(s) Summary @ 1rowsoutof 1 | search ﬂ; [}
Status MName Verification Type | Verification Technique | Mumber of Policy(s) | Combination Algorithm | Enforcement Algorithm Policy List
UpToDate | Policy Verification [luly 3, 2018 16:16:57) Standard Merged Palicy 3 Deny-guerrides Deny Biased ABAC:BankTeller Palicy, ABAC LoanOfficer Palicy, ABAC:FManager Palicy
Result(s) with selected verification (Palicy Verification (luly 3, 2018 16:16:571) <@ 8 rows out of 8 Search I
Requirement Schema Subject Resource Action Environment Condition Verification Result
TestCase 2 LoanOfficer = officer_1 Loaninfe = CustomerOne_Loan BankActions = Create Permit TRUE
Test Case 2 LoanOfficer = officer_1 Leaninfe = CustomerOne_Loan Bankactions = View Permit TRUE
Test Case 2 LoanOfficer = officer_1 Loaninfo = CustomerTwo_Loan BankActions = Create Parmit TRUE
Test Case 2 LoanOfficer = officer_1 Loaninfo = CustomerTwo_Loan Bankactions = View Permit FALSE
TestCase 2 LoanOfficer = officer_2 Loaninfe = CustomerOne_Loan BankActions = Create Permit TRUE
TestCase 2 LoanOfficer = officer 2 Loaninfo = CustomerOne_Loan Bankactions = View Permit TRUE
Test Case 2 LoanOfficer = officer 2 Loaninfe = CustomerTwo_Loan BankActions = Create Permit TRUE
Test Case 2 LoanOfficer = officer_2 Loaninfo = CustomerTwo_Loan Bankactions = View Permit TRUE

Fig. 15. Merged Policy x Test Case 2

Right away we will notice our Verification Results contains a False which is known as Block
Privilege. A rule or rules in our policy are incorrectly telling the system to not allow officer_1 to
View CustomerTwo_Loan which is required for officer 1 to be able to Create LoanInfo resources.
If we click on our Security Requirement (4), we can analyze deeper the reasoning for this result
we have received. Here is where we will notice we have mistakenly selected the wrong privilege
assignment for this subject’s access on this resource.

Result{s) with selected verification (Pelicy Verification [July 3, 20128 16:16:57)) @ & rows out of 8 Search EE (=]
Requirement Schema Subject Resource Action Environment Condition Verification Result B
Test Case 2 LoanOfficer = officer_1 Loaninfo = CustomerOns_Loan BankActions = Create Parmit. TRUE 7
Test Case 2 LeanOfficer = officer_1 Loaninfo = CustomerOne_Loan BankActions = View Permit TRUE
Test Case 2 LoanOfficer = officer_1 Loaninfo = CustomerTwo_Loan BankActions = Create Permit TRUE
Test Case 2 LoanOfficer = officer_1 Loaninfo = CustomerTwo_Loan BankActions = View Permit FALSE
Test Case 2 LeanOfficer = officer_2 Loaninfo = CustomerOne_Loan BankActions = Create Permit TRUE
Test Case 2 LoanOfficer = officer_2 Loaninfo = CustomerOne_Loan BankActions = View Permit TRUE
Test Case 2 LoanOfficer = officer_2 Loaninfo = CustomarTwao_Loan BankActions = Create. . canditia Permit TRUE
Test Case 2 LeanOfficer = officer_2 Loaninfo = CustomerTwo_Loan BankActions = View Enviror alue Condition = Any Value Permit TRUE)
Palicyis) and Matching result against the selcted security requirement <& 1 rows out of 1 Search ﬂ; [
Policy Name Rule Cembination Algorithm Palicy Enforcement Algorithm Merged Result ite=
Merged Policy : [ABAC : LoanOfficer Policy, ABAC : FiMianager Policy, ABAC : BankTeller Policy] Deny-overrides Deny Biased Deny -
Rule{s) and Matching result of Selected Policy against the selcted security requirement: @ 66 rows out of 66 Search ﬂ; lﬁl
Policy Mame Seguence No Subject Resource Action Environment Condition Decision | Inheritance Relation Match Result [
ABAC : LoanOfficer Policy)| 34 LoanOfficer = officer_1 Personalinfo = CustomerTwo_Personalinfo | BankActions =Create |k, Permit Qriginated Not Applicable | #
ABAC : LoanOfficer Policy 35 LoanOfficer = officer_1 Personalinfo = CustomerThree_Personalinfo | BankActions =View |= Permit Originated Not Applicable
ABAC : LoanOfficer Policy| 36 LoanOfficer = officer_1 Personalinfo = CustomerThree_Personalinfo | BankActions = Create |k, Permit Qriginated Not Applicable
ABAC : LoanOfficer Policy| 37 LoanOfficer = officer_1 Loaninfo = CustomerOnz_Loan BankActions=View |z, Permit Qriginated Not Applicable
ABAC : LoanOfficer Policy 38 LoanOfficer = officer_1 Loaninfo = CustomerOne_Loan Bankactions = Create |, Permit Originated Not Applicable
ABAC : LoanOfficer Policy| 38 LoanOfficer = officer_1 Loaninfo = CustomerTwo_Loan BankActions =View |= Deny Originated Deny
ABAC - LoanOfficer Policy 40 LoanOfficer = officer_1 Loaninfo = CustomerTwo_Loan BankActions = Create |z Permit Originated Not Applicable
ABAC : LoanOfficer Policy 41 LoanOfficer = officer_2 Personzlinfo = CustomerOne_Personalinfo | BankActions =View |[gq Permit Originated Not Applicable
ABAC : LoanOfficer Policy| 42 LoanOfficer = officer_2 Personalinfo = CustomerOne_Personalinfo | BankActions =Create |g Permit Originated Not Applicable
ABAC - LaanOfficer Policy 43 LoanOfficer = officer 2 | Personalinfo = CustomerTwo_Personalinfo | BankActions=View |z, Permit Originated Not Applicable
ABAC : LoanOfficer Policy| 44 LoanOfficer = officer_2 Personalinfo = CustomerTwo_Personalinfo | Bankactions =Creats | Permit Originated Not Apolicable | ¥

Fig. 16. Merged Policy: Match Results

11 RESOLVING THIS ERROR - TEST CASE 2 (BLOCK PRIVILEGE)

To eliminate a Block Privilege error the policy author would need to go back and either update
the related rule that is creating this error or delete it and define a Policy Enforcement Algorithm
as Permit Biased because there will be no specific rule for this scenario. However, this could
potentially create errors for other rules in our policy so we will modify the exact rule in this
situation.

WWW.SECURITYPOLICYTOOL.COM

14

For example, if we were to modify this rule below in the LoanOfficer Policy to Permit...

LoanOfficer Policy: Modify Rule (9):

(Rule No. = 9) — (LoanOfficer = officer_1) — (Action = View) — (Resource = CustomerTwo_Loan) — decision

= Permit

3 LoanOfficer = officer_1

Loaninfo = CustomerTwo_Loan

BankActions = View

Permit

Originated

Fig. 17. LoanOfficer Policy: Modified Rule (9)

Then retest using the same Policy Verification selections as last time we will now get a True
Verification result showing that we no longer have a Block Privilege error occuring.

Policy Verification (July 5, 2018 11:54:51)(s) Summary

® 1 rows outofl

Search ﬂ§]

Status

Mame Verification Type | Werification Technique

Mumber of Policy(s) | Combination Algerithm | Enfarcement Algorithm

Palicy List

UpToDate | Policy Verification [July 5, 2018 11:54.51)

Standard

Ilerged Policy

3 Deny-overrides

Deny Biased

ABAC:BankTeller Policy, ABAC:LoanOfficer Policy, ABAC:Fianager Policy

Result(s) with selected verification [Policy Verification (July 5, 2018 11:54:51)) @ B8 rows out of 8 Search B
Reguirement Schema Subject Resource Action Environment Condition Decision Verification Result
Test Case 2 LoanOfficer = officer_1 Leaninfe = CustomerOne_Loan BankActions = Create Permit TRUE
Test Case 2 LoanOfficer = officer_1 Loaninfo = CustomerOne_Loan Bankactions = View Parmit TRUE
Test Case 2 LoanOfficer = officer_1 Loaninfo = CustomerTwo_Loan BankActions = Create Permit TRUE
TestCase 2 LoanOfficer = officer_1 Loaninfo = CustomerTwo_Loan BankActions = Wiew Permit TRUE
TestCase 2 LoanOfficer = officer 2 Loaninfo = CustomerOne_Loan BankActions = Create Permit TRUE
Test Case 2 LoanOfficer = officer 2 Loaninfe = CustomerOns_Loan Bankactions = Vie Permit TRUE
Test Case 2 LoanOfficer = officer 2 Loaninfo = CustomerTwo_Loan BankActions = Create Permit TRUE
TestCase 2 LoanOfficer = officer 2 Loaninfo = CustomerTwo_Loan Bankactions = View Permit TRUE

Fig. 18. Updated Policy: No Longer Blocking

12 SETTING UP THE POLICIES — TEST CASE 3 (INHERITANCE LOOP)

This bank example contains three policies (BankTeller Policy & LoanOfficer Policy & FManager
Policy). The attributes in this example have not been changed from previous Test Case 1 and
Test Case 2. The Attribute/Attribute Values included in these policies are as shown in Figure
.

WWW.SECURITYPOLICYTOOL.COM

File Project Help

&8 ER AR B -X -©- ¢ -

|8 BankTestCases spt €

=0 -

15

BankTestCase3

Search
~
Q} BankTestCase3d.spt
e sttributs <@ 5 rows out of 5
-4 Attribute Attribute
b
= a Subject Type Total Attribute(s) Total Attribute Value(s)
(=@ Bank Teller ; http:/fwww.w3.0rg/2001/XML5chema#string Subject 3 &
- @ teller_1 Resource 2 5
I Action & 3
teller_2
= Environmsnt 0 o
L-@teller_3 s Cendition o o
Subjects
=@ Financial Manager ; http://www.w3.0rg/2001/XMLSchema#string
manager
= LoanOfficer ; http://www.w3.0rg/2001/XMLSchemadstring
officer_1 Inheritance <@ 2 rows outof 2
officer_2
Type No of Beneficiarie(s)
= [E Resource
Subject Inheritance 3
=} Personalinfo ; http://www.w3.0rg/2001/XMLSchema#string Ao Gl Eateh. o

CustomerQOne_Personalinfo

CustomerTwo_Personalinfo Resourc:s

CustomerThree_Personalinfo

=} Loaninfo ; hitp://www.w3.org/2001/XMLSchemad#string

CustomerOne_Loan

Access Control Model

@ 3 rows out

of 3

Fig. 19. Test Case 3

13 SUBJECT INHERITANCE — TEST CASE 3 (INHERITANCE LOOP)

Depending on your security needs or organizational structure you may decide to define Inheri-
tance relationships to help you generate policy Rules more quickly. For this bank policy example
we will define (3) Subject Inheritance Relationships. If you are creating your own Blank Project
enter the relationship rules below. If you did not create your own Project File, you can simply
open Security Policy Tool — Project File: BankTestCase3 and these relationships will have been

already created for you.

Subject Inheritance:
Beneficiary Values — Financial Manager = manager

Inherited Values — Loan Officer = officer_1 & officer_2

Beneficiary Values — Loan Officer = officer_1

Inherited Values — Bank Teller = teller_1 & teller_2 & teller_3

Beneficiary Values — Loan Officer = officer_2

Inherited Values — Bank Teller = teller_1 & teller_2 & teller_3

CustomerTwo_Loan Tvpe Ho of Policy(s)
5 Action ABAC 3
WMultilevel]
- BankActions ; httpy//www w3 ore/2001/XMLSchema#istring
. Workflow 0
Actions
Create .
o
Approve
View
@ Environment o —— :) : & o L OF
No Environment Security Requirement @ Srows outol 3
B Conition o —— iti
No Conditions ;
£ Inheritance Type Nl bl
= o4 Subject Inheritance Individual Security Reguirement o]
Combinatorial Test Suite 0
i B8 Financial Manager = manager Individual Security Requirement [5}

If we have created these Relationships correctly based on the above direction it will look like

this in Security Policy Tool:

WWW.SECURITYPOLICYTOOL.COM 16

®] f
o
i
@7
]
Be
IH‘ I
X
@
Ty
l»l
3:;.
w
(i
i
o}

Grephical Representstion [Subject Inheritance]

BankActions ; http://winw.w3.0rz/2001/XMLSchemadstring

Fig. 20. Subject Inheritance Relationships

By defining these relationships, any (Originated) Rules with Decision = Permit given to Bank
Teller subject attributes will now also be given to officer 1 & officer 2 as (Inherited) Rules
in our policies. Additionally any Rules with Decision = Permit given to Loan Officers subject
attributes will now also be given to the manager subject attribute. Originated Rules with Decision
= Deny are never Inherited. This is because typically Beneficiaries in these relationships are
higher ranking/senior roles that by nature will have less restrictions (e.g., denying access) than
roles that are providing the Inheritance Value (e.g., bank teller/loan officer in our example).

Hence, it will authorize the Beneficiaries to obtain all privileges of Inherited Values (e.g., gener-
ally lower-level roles) while not obtaining their typically tighter restrictions. If you would like
Beneficiaries to be Denied access similar to their Inherited Value you can still do so by manually
creating individual rules when you begin modeling.

14 UNDERSTANDING THIS ERROR - TEST CASE 3 (INHERITANCE LOOP)

Unlike all other Test Case examples, to demonstrate this error we do not need to run any policy
tests. Thus we do not have sections for modeling our policies, creating security requirements,
and running verification tests for this example. An Inheritance Loop is an error that occurs when
the policy author defines inheritance relations that gives a subject both recursive and subsequent
inheritance.

174

For example, an inheritance loop or sometimes called ”“cyclical inheritance”” could look like

this..

Person A can inherit — Person B Privileges
Person B can inherit — Person C Privileges

Person C can inherit — Person A Privileges

In our example an Inheritance Loop would look like the screenshot below...

WWW.SECURITYPOLICYTOOL.COM

File Project Help

B asdpafpla B -%-

|Z6 BankTestCases sot @

Search

B ¥4 Action

! B-@ Bankactions ; http://www.w3.0rg/2001/XMLSchema#itring
Create
Approve
: View
: @ Environment
-4 Condition
-T= Inheritance

ubject Inheritance

Financial Manzger = manager

LoanOfficer= officer_1
LoanOfficer = officer_2

% LoanOfficer = officer_1

Bank Teller = teller_1
Bank Teller = teller_2

Bank Teller= teller_3

| B LoanOfficer = offic
Bank Teller = teller_1
Bank Teller = teller_2
Bank Teller = teller_3

i % Resource Inheritance

Fig. 21. Inheritance Loop

However, in Security Policy Tool it is not possible to create this type of error. Security Policy
Tool automatically detects which attribute values are being selected as Beneficiaries/Inherited
Values to prevent Inheritance Loops. It will not allow attributes that are already allocated as
Inherited Values to a Beneficiary Value to then also be allocated as a Beneficiary Value to the

h o -4 CE -A

8 -m-2lo -

17

Graphical Representation [Subject Inheritance}:

Subject Inharitance

[Bank Teller = (gue.g] [Bank T 2 cel\mg]

[Bank TRl teue.j]

Beneficiary Value they are already giving their (inheritance) rules to.

See the screenshot below, values that would create an Inheritance Loop are unavailable to be

selected...

WWW.SECURITYPOLICYTOOL.COM

(=} BaniTestcasez spt @

Search

E BankActions ; hitp://www.w3.org/2001/XMLSchema#string
Create
Approve

: - @ View

@ Environment

4 Condition

B~ = Inheritance

- 2 Subject Inheritance

Financizl Manager = manager

@ LoanOfficer = officer_1

LoanOfficer = officer_Z
@ LoanOfficer = officer_1

Bank Teller =teller_1

Bank Teller =teller_3

@ LoanOfficer = officer_2
Bank Teller =teller_1

-3 Bank Teller = teller_2
Bank Teller =teller_3

8 Bank Teller =teller_1

L gy Resource Inheritance

i
@l
N

-E|O -

18

Graphical Representation (Subject Inheritance):

Subject Inheritance

[_-_f; Add Subject Inheritance Inherited Value

Subject Inheritance

LoanOfficer = o Beneficiary Bank Teller =teller_1

Inherited Value - || ~

Bank Taller = taller_1

Add Cancel

ey

Fig. 22. Subject Inheritance: Cannot Add Any Value

In our example, allowing Bank Teller = teller 1, teller_2, or teller_3 to be able to be a Beneficiary

for LoanOfficer = officer_1 or officer_2 or Manager = manager would create an Inheritance Loop.

Security Policy Tool detects this issue and only allows Bank Tellers to be able to be defined as
a Beneficiary to other Bank Tellers since they are not Inheriting Values from each other at this

moment.

If we continue with our example and make teller 1 the beneficiary to teller_2 and teller 3 and
attempt to define another Inherited Value for teller_1 we will get this message below and avoid

creating an Inheritance Loop. See screenshot...

WWW.SECURITYPOLICYTOOL.COM

File Project Help
& 8 8B &R & B -X - @

Fﬂ BankTestCase3.spt £3

Search
Approve
View
@ Environment
4 Condition
&~ 2= Inheritance

£ 4 Subject Inheritance

Financial Manager = manager
LoanOfficer = officer 1
LoanOfficer = officer_2

LoanOfficer = officer_1
Bank Teller =teller_1
Bank Teller =teller_2
Bank Teller =teller_3

LoanOfficer = officer_2
Bank Teller =teller_1
Bank Teller =teller_2
Bank Teller =teller_3

ol Bank Teller =teller 1

Bank Teller =teller_2

Bank Teller =teller_3

P S v

i
[l
i
o)

o E B -

Graphical Representation (Subject Inheritance):

Subject Inheritance
Financial Manager = manager

LoanOfies cecurity Palicy Tool x

® No valid{protecting inheritance loop} inherited value{s) are available

Bank Teller = teller_1

Fig. 23. Subject Inheritance: Loop Error Prevented

15 SETTING UP THE POLICIES — TEST CASE 4 (SEPARATION OF DUTY)

This bank example contains three policies (BankTeller Policy & LoanOfficer Policy & FManager
Policy). The attributes in this example have not been changed from previous Bank Test Cases.
The Attribute/Attribute Values included in these policies are as shown in Figure 4.

WWW.SECURITYPOLICYTOOL.COM

File Project Help
8 &8 &
= & e
i% BankTestCased.spt 3
Search

[&l BanicrestCasea spt

2§ Attribute

= [subiect
=@ Bank Teller ; http://www.w3.org/ 2001 /XMLSchemadstring

teller 1

teller_2

=@ Financial Manager ; http:/fwww.w3.0org/2001/XMLSchemasstring

L@ manager

=@ LoanOfficer ; http://www.w3.org/2001/XMLSchema#string
Ly officer_1

- officer_2

=+|[E] Resource
=@ Personalinfo ; http://www.w3.0rg/2001/XMLSchema#string

LS CustomerOne_Personalinfo

B == Inheritance

i A Subject Inheritance

- oL Resource Inheritance

Fig. 24. Test Case 4

DARL B X -®- -6 -

4 W | a
S o] 2%

‘@ -4 -E-B-F0-

20

BankTestCased

% teller 3 Subjects
Baessss =

Attribute @ 5 rows outof 5
Type Total Attribute(s) Total Atiribute Valuels)
Subject 3 [
Resource 2 El
Action 1 5
Environment a a
Condition o o
Inheritance <@ 2 rows outof 2

Tyee

Me of Beneficiariels)

Subject Inheritance

a

Resource Inheritance

a

Access Control Model

& 3 rows outof 3

b CustomerTwo_Personalinfo Resources
! e
*..%9 CustomerThree_Personalinfo
=@ Loaninfo ; hitp://www.w3.0rg/2001/XMLSchema#string
L. CustomerOne_Loan
& CustomerTwa_Loan
- & Action
[BankActions ; http://www w3 org/2004 /XMLSchematstring Actions
Create S=eseeee
Approve
Wiew
@ Environment fis— No Environments
© Condition s No Conditions

Type Na of Palicy(s)
ABAC 3
Multilevel 0
Workflow 0
Security Requirement @ 3rowsoutof 3
Type No of Bo
Individusl Security Reguirement
Combinatorial Test Suite

Individual Security Requirement

a
o

16 MODELING YOUR PoLIcY — TEST CASE 4 (SEPERATION OF DUTY)

Now that we have entered our attributes we can model our three policies (BankTeller Policy
& LoanOfficer Policy & FManager Policy). See the list below of the rules contained in each of
these policies. You can open a “New (blank) Project” and build these policies by entering the

following rules below:

BankTeller Policy:

(Bank Teller = teller_1, CustomerOne_Personallnfo, Create) —Permit
(Bank Teller = teller_1, CustomerOne_Personallnfo, View) —Permit
(Bank Teller = teller_1, CustomerTwo_Personallnfo, Create) —Permit
(Bank Teller = teller_1, CustomerTwo_Personallnfo, View) —Permit

(Bank Teller = teller_1, CustomerThree_Personallnfo, Create) —Permit

(Bank Teller = teller_1, CustomerThree_Personallnfo, View) —Permit
(Bank Teller = teller_2, CustomerOne_Personallnfo, Create) —Permit
(Bank Teller = teller_2, CustomerOne_Personallnfo, View) —Permit
(Bank Teller = teller_2, CustomerTwo_Personallnfo, Create) —Permit
(Bank Teller = teller_2, CustomerTwo_Personallnfo, View) —Permit

(Bank Teller = teller_2, CustomerThree_Personallnfo, Create) —Permit

(Bank Teller = teller_2, CustomerThree_Personallnfo, View) —Permit
(Bank Teller = teller_3, CustomerOne_Personallnfo, Create) —Permit
(Bank Teller = teller_3, CustomerOne_Personallnfo, View) —Permit
(Bank Teller = teller_3, CustomerTwo_Personallnfo, Create) —Permit
(Bank Teller = teller_3, CustomerTwo_Personallnfo, View) —Permit

(Bank Teller = teller_3, CustomerThree_Personallnfo, Create) —Permit

(Bank Teller = teller_3, CustomerThree_Personallnfo, View) —Permit

WWW.SECURITYPOLICYTOOL.COM 21

(Bank Teller = teller_1, CustomerOne_Loan, View) —Permit
(Bank Teller = teller_1, CustomerTwo_Loan, View) —Permit
(Bank Teller = teller_2, CustomerOne_Loan, View) —Permit
(Bank Teller = teller_2, CustomerTwo_Loan, View) —Permit
(Bank Teller = teller_3, CustomerOne_Loan, View) —Permit
(Bank Teller = teller_3, CustomerTwo_Loan, View) —Permit
(Bank Teller = teller_1, CustomerOne_Loan, Approve) —Deny
(Bank Teller = teller_1, CustomerTwo_Loan, Approve) —Deny
(Bank Teller = teller_2, CustomerOne_Loan, Approve) —Deny
(Bank Teller = teller_2, CustomerTwo_Loan, Approve) —Deny
(Bank Teller = teller_3, CustomerOne_Loan, Approve) —Deny

(Bank Teller = teller_3, CustomerTwo_Loan, Approve) —Deny
LoanOfficer Policy:

(Loan Officer = officer_1, CustomerOne_Personallnfo, View) —Permit
(Loan Officer = officer_1, CustomerOne_Personallnfo, Create) —Permit
(Loan Officer = officer_1, CustomerTwo_Personallnfo, View) —Permit
(Loan Officer = officer_1, CustomerTwo_Personallnfo, Create) —Permit
(Loan Officer = officer_1, CustomerThree_Personallnfo, View) —Permit
(Loan Officer = officer_1, CustomerThree_Personallnfo, Create) —Permit
(Loan Officer = officer_1, CustomerOne_Loan, View) —Permit

(Loan Officer = officer_1, CustomerOne_Loan, Create) —Permit

(Loan Officer = officer_1, CustomerTwo_Loan, View) —Permit

(Loan Officer = officer_1, CustomerTwo_Loan, Create) —Permit

(Loan Officer = officer_2, CustomerOne_Personallnfo, View) —Permit
(Loan Officer = officer_2, CustomerOne_Personallnfo, Create) —Permit
(Loan Officer = officer_2, CustomerTwo_Personallnfo, View) —Permit
(Loan Officer = officer_2, CustomerTwo_Personallnfo, Create) —Permit
(Loan Officer = officer_2, CustomerThree_Personallnfo, View) —Permit
(Loan Officer = officer_2, CustomerThree_Personallnfo, Create) —Permit
(Loan Officer = officer_2, CustomerOne_Loan, View) —Permit

(Loan Officer = officer_2, CustomerOne_Loan, Create) —Permit

(Loan Officer = officer_2, CustomerTwo_Loan, View) —Permit

(Loan Officer = officer_2, CustomerTwo_Loan, Create) —Permit

(Loan Officer = officer_1, CustomerTwo_Loan, Approve) —Deny
(Loan Officer = officer_2, CustomerOne_Loan, Approve) —Deny

(Loan Officer = officer_2, CustomerTwo_Loan, Approve) —Deny

FManager Policy:

(Manager = manager, CustomerOne_Personallnfo, Create) —Permit
(Manager = manager, CustomerOne_Personallnfo, View) —Permit
(Manager = manager, CustomerTwo_Personallnfo, Create) —Permit
(Manager = manager, CustomerTwo_Personallnfo, View) —Permit
(Manager = manager, CustomerThree_Personallnfo, Create) —Permit
(Manager = manager, CustomerThree_Personallnfo, View) —Permit
(Manager = manager, CustomerOne_Loan, Create) —Permit
(Manager = manager, CustomerOne_Loan, View) —Permit
(Manager = manager, CustomerTwo_Loan, Create) —Permit
(Manager = manager, CustomerTwo_Loan, View) —Permit
(Manager = manager, CustomerOne_Loan, Approve) —Permit

(Manager = manager, CustomerTwo_Loan, Approve) —Permit

After entering the rules above your modeled policies should look like the screenshots below. If
you did not create your own Project File, you can simply open Security Policy Tool — Project
File: BankTestCase4 and these policies will have been already created for you.

WWW.SECURITYPOLICYTOOL.COM

22

BankTeller Policy Policy(s) Summary @ 1 rows out of 1 LSearch | 0 &
Model Policy Name Rulz Combination Algorithm Policy Enforcement Algorithm Mo. of Rule(s) Time Created Last Modified
ABAC BankTeller Policy Deny-overrides Deny Biased 30 July 3, 2018 14:28:32 July 3, 2018 14:28:32

Rule (s) defined with selected policy (BankTeller Palicy) <& 30 rows out of 30 } search ! ﬂg lb

Sequence No Subject Resource Action Environment Condition Decision Inheritance Relation
1 Bank Teller =teller_1 Personalinfo = CustomerOne_Perzonalinfo BankActions = Create Permit Originated
2 Bank Teller =teller_1 Personalinfo = CustomerOne_Perzonalinfo BankActions = View Permit Originated
3 Bank Teller =teller_1 Personalinfo = CustomerTwo_Personalinfo BankActions = Create Permit Originated
4 Bank Teller = teller_1 Personalinfo = CustomerTwo_Personalinfo BankActions = View Permit Originated
5 Bank Teller = teller_1 Personalinfo = CustomerThree_Personalinfo BankActions = Create Permit Originated
<] Bank Teller =teller_1 Personalinfo = CustomerThree_Personalinfo BankActions = View Permit Originated
i Bank Teller =teller_2 personalinfo = CustomerOne_Personalinfo BankActions = Create Permit Originated
= Bank Teller =teller_2 Personalinfo = CustomerOne_Personalinfo BankActions = View Permit Originated
g Bank Teller =teller_2 Personalinfo = CustomerTwo_Perzonalinfo BankActions = Create Permit Originated
10 Bank Teller =teller_2 Personalinfo = CustomerTwo_Perzonalinfo BankActions = View Permit Originated
11 Bank Teller =teller_2 Personalinfo = CustomerThree_Personalinfo BankActions = Create Permit Originated
12 Bank Teller = teller_2 Personalinfo = CustomerThree_Personalinfo BankActions = View Permit Originated
13 Bank Teller =teller_3 Personalinfa = CustomerOne_Personalinfo BankActions = Create Permit Originated
14 Bank Teller =teller_3 Personalinfo = CustomerOne_Personalinfo BankActions = View Permit Originated
15 Bank Teller =teller_3 Personalinfo = CustomerTwo_Personalinfo BankActions = Create Permit Originated
16 Bank Teller =teller_3 Personalinfo = CustomerTwe_Personalinfo BankActions = View Permit Originated
17 Bank Teller =teller_3 Personalinfo = CustomerThree_Personalinfo BankActions = Create Permit Originated
18 Bank Teller =teller_3 Personalinfo = CustomerThree_Personalinfo BankActions = View Permit Originated
19 Bank Teller = teller_1 Loaninfo = CustomerOne_Loan BankActions = View Permit Originated
20 Bank Teller =teller_1 Loaninfo = CustomerTwo_Loan BankActions = View Permit Originated
21 Bank Teller =teller_2 Leaninfo = CustomerOne_Loan BankActions = View Permit Originated
22 Bank Teller =teller_2 Lozninfo = CustomerTwo_Loan BankActions = View Permit Originated
23 Bank Teller =teller_3 Lozninfo = CustomerOne_Loan BankActions = View Permit Originated
24 Bank Teller =teller_3 Loaninfo = CustomerTwo_Loan BankActions = View Permit Originated
25 Bank Teller = teller_1 Leaninfo = CustomerCOne_Loan BankActions = Approve Deny Originated
25 Bank Teller = teller_1 Loaninfa = CustomerTwo_Loan BankActicns = Approve Deny Originated
27 Bank Teller =teller_2 Loaninfo = CustomerOne_Loan BankActions = Approve Deny Originated
28 Bank Teller =teller_2 Loaninfo = CustomerTwo_Loan BankActions = Approve Deny Originated
28 Bank Teller =teller_3 Lozninfo = CustomerOne_Loan BankActions = Approve Deny Originated
30 Bank Teller =teller_3 Lozninfo = CustomerTwo_Loan BankActions = Approve Deny Originated

Fig. 25. BankTeller Policy

LoanOfficer Palicy Policy(s) Summary <@® 1rowsoutofl
Model Policy Name Rule Combination Algorithm Policy Enforcement Algorithm No. of Rule(s) Time Created Last Maodified
ABAC LoanOfficer Policy Deny-overrides Permit Biased 25 July 3, 2018 14:40:46 July 3, 2018 14:40:46
Rule () defined with selected policy (LoanOfficer Policy) @ 23 rows out of 23 } Search ! =]
Sequence No Subject Resource Action Environment Condition Decision Inheritance Relation
1 LoanOfficer = officer_1 Personalinfe = CustomerOne_Personalinfo BankActions = View Permit Originated
2 LoanOfficer = officer_1 Personalinfo = CustomerQne_Personalinfo BankActions = Create Permit Originated
3 LoanOfficer = officer_1 Personallnfo = CustomerTwo_Personalinfo BankActions = View Permit Originated
4 LoanOfficer = officer_1 Personalinfo = CustomerTwo_Personalinfo BankActions = Create Permit Originated
s LoanOfficer = officer_1 personalinfo = CustomerThree_Personalinfo BankActions = View Permit Originated
6 LoanOfficer = officer_1 Personalinfo = CustomerThree_Personzlinfo BankActions = Create Permit Originated
7 LoanOfficer = officer_1 Loaninfo = CustomerOne_Loan BankActions = View Permit Originated
8 LoanOfficer = officer_1 Loaninfo = CustomerCne_Loan BankActions = Create Permit Originated
=] LoanOfficer = officer_1 Loaninfo = CustomerTwo_Loan BankActions = View Permit Originated
10 LoanOfficer = officer_1 Loaninfo = CustomerTwao_Loan BankActions = Create Permit Originated
11 LoanOfficer = officer_2 Personallnfo = CustomerQne_Personalinfo BankActions = View Permit Originated
12 LoanOfficer = officer_2 Perzonalinfo = CustomerOne_Personalinfo BankActions = Create Permit Originated
13 LoanOfficer = officer_2 Personalinfe = CustomerTwo_Personalinfo BankActions = View Permit Originated
14 LoanOfficer = officer_2 Personalinfo = CustomerTwo_Personalinfo BankActions = Create Permit Originated
15 LoanOfficer = officer_2 Perzonalinfo = CustomerThree_Personalinfo BankActions = View Permit Originated
16 LoanOfficer = officer_2 Personallnfo = CustomerThree_Personalinfo BankActions = Create Permit Originated
17 LoanOfficer = officer_2 Loaninfo = CustomerOne_Loan BankActions = View Permit Originated
18 LoanOfficer = officer_2 Loaninfo = CustomerOne_Loan BankActions = Create Permit Originated
19 LoanOfficer = officer_2 Loaninfo = CustomerTwo_Loan BankActions = View Permit Originated
20 LoanOfficer = officer_2 Loaninfo = CustomerTwo_Loan BankActions = Create Permit Originated
21 LoanOfficer = officer_1 Loaninfo = CustomerTwo_Loan BankActions = Approve Deny Originated
22 LoanOfficer = officer_2 Loaninfo = CustomerOne_Loan BankActions = Approve Deny Originated
23 LoanOfficer = officer_2 Loaninfo = CustomerTwo_Loan BankActions = Approve Deny Originated

Fig. 26. LoanOfficer Policy

WWW.SECURITYPOLICYTOOL.COM 23

@ 1rowsoutof 1 search EE -]

Flanager Folicy Policy(s) Summary

Mode] Policy Name Rule Combination Algorithm Policy Enforcement Algorithm No. of Rule(s) Time Created Last Modified

ABAC Flianager Policy Permit-overrides Permit Bizsed 10 July 3, 2018 15:03:03 July 3, 2018 15:03:03

Rule (s] defined with selected policy (FManager Policy) @ 10 rows out of 10 Search ag (]
Sequence No Subject Resource Action Environment Condition Decision Inheritance Relation
: § Financial Manager = manager Personalinfo = CustomerQOne_Personalinfa BankActions = Create Permit Originated
2 Financial Manager = manager Personalinfo = CustomerOne_Personalinfo BankActions = View Permit Originated
3 Financial Manager = manager Personzlinfo = CustomerTwo_Personalinfo BankActions = Create Permit Originated
4 Financial Manager = manager Personalinfo = CustomerTwo_Personalinfo BankActions = View Permit Originated
5 Financial Manager = manager Personallnfo = CustomerThree_Personalinfo BankActions = Create Permit Originated
6 Financial Manager = manager Personalinfo = CustomerThree_Personalinfo BankActions = View Permit Originated
7 Financial Manager = manager Loaninfa = CustomerOne_Loan BankActions = Vi Permit Originated
g Financial Manager = manager Loaninfo = CustomerTwo_Loan BankActions =\ Permit Originated
9 Financial Manager = manager Loaninfo = CustomerQne_Loan BankActions = Approve Permit Originated
10 Financial Manager = manager Loaninfo = CustomerTwe_Loan BankActions = Approve Permit Originated

Fig. 27. FManager Policy

17 SOD SECURITY REQUIREMENTS - TEST CASE 4 (SEPARATION OF DUTY)

The final step before analyzing these policies for errors is to create security requirements to use
for testing. If you are building a “New (blank) Project” on your own you will enter the following
security requirements below:

SOD Security Requirements:
(Loan Officer = officer_1) & (Action = Approve) & (LoanInfo = CustomerOne_Loan) — decision = Permit
(Loan Officer = officer_1) & (Action = Create) & (LoanInfo = CustomerOne_Loan) — decision = Permit
After entering the rules above your SOD security requirements should look like the screenshot

below. If you did not create your own Project File you can simply open Security Policy Tool —
Project File: BankTestCase4 and these requirements will have been already created for you.

50D 1(s) Summary @ 1rowsoutof 1 search a; (-]
Access Control Security Requirement Requirement Schema Mo. of Security Requirement(s)
sS0D 30D 1 2
. > 2 rows out of 2 =
Security Reguirement (s) defined under selected Requirement Schema (SOD 1) @ lrowsoutorZ Search | ﬂa =
Sequence No Subject Resource Action Environment Condition Decision
1 LoanOfficer = officer_1 Loaninfa = CustomerOne_Loan BankActions = Approve Permit
2 LoanOfficer = officer_1 Loaninfo = CustomerOne_Loan BankActions = Create Permit

Fig. 28. SOD Security Requirements

18 PoLICY VERIFICATION/ANALYZING RESULTS - TEST CASE 4 (SEPARATION OF
DuTY)

Now that we are ready to test our policies let’s discuss the error we will be looking for in this
fourth example. When policies are designed there is potential for a “Separation of Duty” error
being created. A Separation of Duty error occurs when two or more rules cause competing inter-
ests among subjects, resources, or actions. For example, giving one subject too much privileges
to the point that they could misuse the system.

For example, when the policy author was designing the logic for these bank policies; the author
intended all LoanOfficers to be able to Create all LoanInfo resources. However, they should not
be able to Approve loans as way to ensure Loan Officers do not misuse their privileges to create

WWW.SECURITYPOLICYTOOL.COM 24

improper loans. To ensure the policy has been designed correctly let’s verify that this is false
(e.g., LoanOfficer — Approve — LoanInfo Resources).

We will run one “Single Policy” Separation of Duty Verification with our LoanOfficer Policy to
reveal the Separation of Duty error that is present in our policies. To do this, we will select SOD
1 (security requirement) and LoanOfficer Policy and analyze our verification results. Again, this
will have already been done for you if you open Project File: BankTestCase4.

S0D Verification(July 3, 2018 18:22:35)(z) Summary <@ 1rowsoutofl Search u; [+
Status Name Verification Type Verification Technique Number of Policy(s) Combination Algorithm Enfarcement Algorithm Policy List
UpToDate 50D Verification[July 3, 2018 18:22:35) s0D Single Policy 1 Deny-pverides Deny Biazed ABAC:LoanOfficer Policy
5 £q =
Result(s) with selected verification (SOD Verification{July 3, 2018 18:22:35]) @ 1 rows outof 1 Search ﬂg o
SOD Name SOD Result
50D :50D 1 All can be granted
Result(s) with selected 50D ® 2 rows out of 2 Search 0w
Reguirement Schema Subject Resource Action Enwironment Condition Decision Verification Result
S0D 1 LoanOfficer = officer_1 Losninfa = CustomerOne_Loan BankActions = Approve - Iy . Condition =Any Value Permit TRUE
SOD 1 LoanOfficer = officer_1 Loaninfa = CustomerOne_Loan BankActions = Create L L Conition = Any Yalis Permit TRUE

Fig. 29. LoanOfficer Policy x SOD 1

Right away we will notice our test came back with two True Results which is not what was
intended. LoanOfficers should be able to Create loans but should not be able to Approve loans.
A rule or rules in our policy are incorrectly telling the system to allow officer_1 to Approve
CustomerTwo_Loan. If we click on our Security Requirement related to Approving the resource,
we can analyze deeper the reasoning for this result we have received.

% rowe out of 3] =
Result(s) with selected 50D @ 2 rows out of 2 Search u; (-]
Requirement Schema Subject Resource Action Environment Condition Decision Verification Result
50D 1 LoanOfficer = officer_1 Loaninfo = CustomerOne_Loan BankActions = Approve Permit TRUE
50D 1 LoanOfficer = officer_1 Loaninfo = CustomerOne_Loan BankActions = Create Permit TRUE
Policy(s) and Matching result against the selcted security requirement: @ 1 rowsoutof1 Search EE IHI
Policy Name Rule Combination Algorithm Policy Enforcement Algorithm Combined Result
ABAC : LoanOfficer Policy Deny-overrides Permit Biazed Permit
Rule(s) and Matching result of Selected Policy against the selcted security requirement: @ 23 rows out of Search HE IE!
Sequence No Subject Resource Action Environment Condition Decision Inheritance Relation Match Result
1 LoanOfficer = officer_1 Personalinfo = CustomerQne_Personalinfo BankActions = View Permit Originated Not Applicable
2 LoanOfficer = officer_1 Personallnfo = CustomerOne_Personalinfo BankaActions = Create Permit Originated Not Applicable
3 LoanOfficer = officer_1 Personalinfo = CustomerTwo_Personalinfo BankActions = View Permit Originated Not Applicable
4 LoanOfficer = officer_1 Personalinfo = CustomerTwo_Personalinfo BankActions = Create Permit Originated Not Applicable
5 LoanOfficer = officer_1 Personalinfo = CustomerThree_Personalinfo BankActions = View Permit Originated Not Applicable
& LoanOfficer = officer_1 Personalinfo = CustomerThree_Personalinfo Bankactions = Create Permit Originated Not Applicable
7 LoanOfficer = of Loaninfo = CustomerOne_Loan BankActions = View Permit Originated Not Applicable
8 LoanOfficer = officer_1 Loaninfo = CustomerOne_Loan BankaActions = Create Permit Originated Not Applicable
2 LoanOfficer = officer_1 Leaninfo = CustomerTwo_Loan BankActions = View Permit Originated Not Applicable
10 LoanOfficer = officer_1 Loaninfo = CustomerTwo_Loan Bankactions = Create Permit Originated Not Aoplicable
1 LoanOfficer = of Personalinfo = CustomerOne_Personalinfo BankActions = View Permit Originated Not Applicable
12 LoanOfficer = officer_2 Personalinfo = CustomerOne_Personalinfo BankActions = Create Permit Originated Not Applicable
13 LoanOfficer = officer_2 Personalinfo = CustomerTwo_Personalinfo BankActions = View Permit Originated Not Applicable
14 LoanOfficer = officer_2 Personalinfo = CustomerTwo_Personalinfo BankActions = Create Permit Originatad Not Applicable
15 LoanOfficer = officer_2 Personalinfo = CustomerThree_Personalinfo BankActions = View Permit Originated Not Applicable
16 LoanOfficer = r_2 Personalinfo = CustomerThree_Personalinfo BankActions = Create Permit Originated Not Applicable
17 LoanOfficer = of T Loaninfo = CustomerOne_Loan BankActions = View Permit Originated Not Applicable
18 LoanOfficer = officer_2 Leaninfo = CustomerOne_Loan Bankactions = Create Permit Originated Not Applicable
19 LoanOfficer = officer_2 Loaninfo = CustomerTwo_Loan BankActions = View Permit Originated Not Applicable
20 LoanOfficer = officer_2 Loan|nfo = CustomerTwo_Loan BankaActions = Create Permit Originated Not Apolicable
23 LoanOfficer = offi 1 Loaninfo = CustomerTwo_Loan BankActions = Approve Deny Originated Not Applicable
22 LoanOfficer = officer_2 Loaninfo = CustomerOne_Loan BankActions = Approve Deny Originated Not Applicable
23 LoanOfficer = officer_2 Loaninfo = CustomerTwo_Loan BankActions = Approve Deny Originated Not Applicable

Fig. 30. LoanOfficer Policy: Match Results

19 RESOLVING THIS ERROR - TEST CASE 4 (SEPARATION OF DUTY)
Looking at the Match Results we will see all rules in the LoanOfficer have come back as ““Not

Applicable

i

which can only mean that we are missing a rule to cover this particular access

request. Upon further inspection we will see that in the LoanOfficer Policy all Loan Officers are
Denied to Approve LoanInfo resources except for the individual (officer_one) on this specific
resource (CustomerOne_Loan). In addition to missing this rule the Policy Enforcement Algorithm
has been selected as Permit-Biased thus why the result is Permit with no rules defined related
to the request.
To eliminate this error the policy author would need to go back and either update the Policy
Enforcement Algorithm to Deny Biased or go back to the LoanOfficer Policy and create a rule
for this scenario.

For this example, let’s create a new rule in the LoanOfficer Policy...

LoanOfficer Policy: New Rule (24):

(Rule No. = 24) — (LoanOfficer = officer_1) — (Action = Approve) — (Resource = CustomerOne_Loan) — decision

= Deny

24

LoanOfficer = officer_1

Loaninfo = CustomerOne_Loan

BankActions = Approve

Deny

Originated

Fig. 31. LoanOfficer Policy: New Rule (24)

WWW.SECURITYPOLICYTOOL.COM

26

Then retest using the same SOD Verification selections as last time we will now get a False
Verification result showing that we no longer have a Seperation of Duty error occurring.

SO0 Verification(luly 5, 2018 17:55:08)(s) Summary @ Lrowsoutofl | Search]
Status Name Verification Type Verification Technique Number of Policy(s) Combination Algorithm Enforcement Algorithm Policy List
UpToDate 50D Verification[July 5, 2018 17:55:06) s0D single Policy 1 Deny-overmides Deny Biazed ABAC:LoanOfficer Policy
Result(s) with selected verification [SOD Verification{luly 5, 2018 17:55:06)) @& 1rows outo Search B s
500 Name 50D Result
S0D:50D 1 1 can be grantad
Result(s) with selected S0D ® 2 rows out of 2 Search 0
Reguirement Schema Subject Resource Action Environment Condition Decision verification Result
s0D 1 LoanOfficer = officer_1 Loanlnfe = CustomerOne_Loan BankActions = Approve Bermit FALSE
50D 1 LoanOfficer = officer_1 Loaninfo = CustomerOne_Loan BankActions = Create Permit TRUE

Fig. 32. Updated Policy: No Seperation of Duty

20 SETTING UP THE POLICIES — TEST CASE 5 (INCONSISTENT ASSIGNMENT)

This bank example contains three policies (BankTeller Policy & LoanOfficer Policy & FManager
Policy). The attributes in this example have not been changed from previous Test Case examples.
The Attribute/Attribute Values included in these policies are as shown in Figure B3.

WWW.SECURITYPOLICYTOOL.COM

File Project Help

|0 BankTestCases spt €

| search

- Attribute

& Subject
=@ Bank Teller ; http://www.w3.0rg/2001/XMLSchematistring

@ teller_1

@ teller_2
L@ teller 3
(=@ Financial Manager ; http://www.w3.0rg/2001/XMLSchematstring

manager

[}

@ LoanOfficer ; hitp://www. w3 ore/2001/XMLSchema#string
officer_1

officer_2

ﬂE Resource
=@ Personalinfo ; http://www.w3.org/2001/XNMLSchema#string
i CustomerQOne_Personalinfo
CustomerTwo_Personalinfo
CustomerThree_Personalinfe
@ Loaninfo ; hitp://www.w3.0rg/2001/XMLSchema#string
i - CustomerOne_Lozn

L @ CustomerTwo_Loan

3 Action

=

@ BankActions ; http:/fwww.w3.0rg/2001/XMLSchema#string

Create
£ Approve

&y View

- @ Environment

@ Condition ‘:

El-T== Inheritance

- —

. Subject Inheritance

t gk Resource Inheritance

Fig. 33. Test Case 5

21

2P ARLE-H-X ®- -0 -

Subjects
‘l—-

IResources

Actions

<!

No Environments
== No Conditions

& 4 5 = = =
A % -4 B -A-E -E -E|O -
BankTestCase5
Attribute @ 5 rows outof 5
Type Total Attribute(s) Total Attribute Value(s)
Subject 3 5
Resource 2 5
Action 1 3
Envirenment [¢] o]
Condition 0 o
Inheritance <@ 2 rows out of 2

Type

No of Beneficiarie(s]

Subject Inheritance

Resource Inheritance

ale

Access Control Model

Type No of Policy(s)
ABAC 3
Multilevel 0
Workflow 0
Security Requirement @ 3 rows out of 3
Type No of Po
Individual Security Requirement o
Combinatorial Test Suite 0

Individual Security Requirement

o

MODELING YOUR PoLICY — TEST CASE 5 (INCONSISTENT ASSIGNMENT)

Now that we have entered our attributes we can model our three policies (BankTeller Policy
& LoanOfficer Policy & FManager Policy). See the list below of the rules contained in each of
these policies. You can open a “New (blank) Project” and build these policies by entering the

following rules below:

BankTeller Policy:

(Bank Teller = teller_1, CustomerOne_Personallnfo, Create) —Permit
(Bank Teller = teller_1, CustomerOne_Personallnfo, View) —Permit
(Bank Teller = teller_1, CustomerTwo_Personallnfo, Create) —Permit
(Bank Teller = teller_1, CustomerTwo_Personallnfo, View) —Permit
(Bank Teller = teller_1, CustomerThree_Personallnfo, Create) —Permit
(Bank Teller = teller_1, CustomerThree_Personallnfo, View) —Permit
(Bank Teller = teller_2, CustomerOne_Personallnfo, Create) —Permit
(Bank Teller = teller_2, CustomerOne_Personallnfo, View) —Permit
(Bank Teller = teller_2, CustomerTwo_Personallnfo, Create) —Permit
(Bank Teller = teller_2, CustomerTwo_Personallnfo, View) —Permit
(Bank Teller = teller_2, CustomerThree_Personallnfo, Create) —Permit
(Bank Teller = teller_2, CustomerThree_Personallnfo, View) —Permit
(Bank Teller = teller_3, CustomerOne_Personallnfo, Create) —Permit
(Bank Teller = teller_3, CustomerOne_Personallnfo, View) —Permit
(Bank Teller = teller_3, CustomerTwo_Personallnfo, Create) —Permit
(Bank Teller = teller_3, CustomerTwo_Personallnfo, View) —Permit
(Bank Teller = teller_3, CustomerThree_Personallnfo, Create) —Permit
(Bank Teller = teller_3, CustomerThree_Personallnfo, View) —Permit

WWW.SECURITYPOLICYTOOL.COM 28

(Bank Teller = teller_1, CustomerOne_Loan, View) —Permit
(Bank Teller = teller_1, CustomerTwo_Loan, View) —Permit
(Bank Teller = teller_2, CustomerOne_Loan, View) —Permit
(Bank Teller = teller_2, CustomerTwo_Loan, View) —Permit
(Bank Teller = teller_3, CustomerOne_Loan, View) —Permit
(Bank Teller = teller_3, CustomerTwo_Loan, View) —Permit
(Bank Teller = teller_1, CustomerOne_Loan, Approve) —Deny
(Bank Teller = teller_1, CustomerTwo_Loan, Approve) —Deny
(Bank Teller = teller_2, CustomerOne_Loan, Approve) —Deny
(Bank Teller = teller_2, CustomerTwo_Loan, Approve) —Deny
(Bank Teller = teller_3, CustomerOne_Loan, Approve) —Deny

(Bank Teller = teller_3, CustomerTwo_Loan, Approve) —Deny

LoanOfficer Policy:

(Loan Officer = officer_1, CustomerOne_Personallnfo, View) —Permit
(Loan Officer = officer_1, CustomerOne_Personallnfo, Create) —Permit
(Loan Officer = officer_1, CustomerTwo_Personallnfo, View) —Permit
(Loan Officer = officer_1, CustomerTwo_Personallnfo, Create) —Permit
(Loan Officer = officer_1, CustomerThree_Personallnfo, View) —Permit
(Loan Officer = officer_1, CustomerThree_Personallnfo, Create) —Permit
(Loan Officer = officer_1, CustomerOne_Loan, View) —Permit

(Loan Officer = officer_1, CustomerOne_Loan, Create) —Permit

(Loan Officer = officer_1, CustomerTwo_Loan, View) —Permit

(Loan Officer = officer_1, CustomerTwo_Loan, Create) —Permit

(Loan Officer = officer_2, CustomerOne_Personallnfo, View) —Permit
(Loan Officer = officer_2, CustomerOne_Personallnfo, Create) —Permit
(Loan Officer = officer_2, CustomerTwo_Personallnfo, View) —Permit
(Loan Officer = officer_2, CustomerTwo_Personallnfo, Create) —Permit
(Loan Officer = officer_2, CustomerThree_Personallnfo, View) —Permit
(Loan Officer = officer_2, CustomerThree_Personallnfo, Create) —Permit
(Loan Officer = officer_2, CustomerOne_Loan, View) —Permit

(Loan Officer = officer_2, CustomerOne_Loan, Create) —Permit

(Loan Officer = officer_2, CustomerTwo_Loan, View) —Permit

(Loan Officer = officer_2, CustomerTwo_Loan, Create) —Permit

(Loan Officer = officer_1, CustomerOne_Loan, Approve) —Deny

(Loan Officer = officer_1, CustomerTwo_Loan, Approve) —Deny
(Loan Officer = officer_2, CustomerOne_Loan, Approve) —Deny

(Loan Officer = officer_2, CustomerTwo_Loan, Approve) —Deny

FManager Policy:

(Manager = manager, CustomerOne_Personallnfo, Create) —Permit
(Manager = manager, CustomerOne_Personallnfo, View) —Permit
(Manager = manager, CustomerTwo_Personallnfo, Create) —Permit
(Manager = manager, CustomerTwo_Personallnfo, View) —Permit
(Manager = manager, CustomerThree_Personallnfo, Create) —Permit
(Manager = manager, CustomerThree_Personallnfo, View) —Permit
(Manager = manager, CustomerOne_Loan, Create) —Permit
(Manager = manager, CustomerOne_Loan, View) —Permit
(Manager = manager, CustomerTwo_Loan, Create) —Permit
(Manager = manager, CustomerTwo_Loan, View) —Permit
(Manager = manager, CustomerOne_Loan, Approve) —Permit

(Manager = manager, CustomerTwo_Loan, Approve) —Permit

After entering the rules above your modeled policies should look like the screenshots below. If
you did not create your own Project File, you can simply open Security Policy Tool — Project
File: BankTestCase5 and these policies will have been already created for you.

WWW.SECURITYPOLICYTOOL.COM 29

Policy.eps

BankTeller Policy Policy(s) Summary @ 1rowsoutof 1
Madel Palicy Name Rule Combination Algarithm Policy Enforcement Algorithm Mo. of Rulefs) Time Created Last Modified
ABAC BankTeller Policy Deny-overrides Deny Biased 30 July 3, 2018 14:28:32 July 3, 2018 14:28:32
Rule (s) defined with selected policy (BankTeller Policy) <@ 30 rows out of 30 } Search ! ug l'
Sequence Mo Subject Resource Action Envirenment Condition Decision Inheritance Relation
1 Bank Teller = teller_1 Personalinfo = CustomerOne_Personallnfo BankActions = Create Permit Originated
2 Bank Teller =teller_1 Personalinfo = CustomerOne_Personalinfo BankActions = View Permit Originated
3 Bank Teller =teller_1 Personalinfo = CustomerTwe_Personalinfo BankActions = Create Permit Originated
4 Bank Teller =teller_1 Personalinfo = CustomerTwo_Personalinfo BankActions = View Permit Originated
5 Bank Teller =teller_1 Personalinfo = CustomerThree_Personalinfo BankActions = Create Permit Originated
-1 Bank Teller = teller_1 Personalinfo = CustomerThree_Personalinfo BankActions = View Permit Originated
7 Bank Teller = teller_2 Personalinfo = CustomerOne_Personalinfo BankActions = Create Permit Originated
8 Bank Teller = teller_2 Personalinfo = CustomerOne_Personallnfo BankActions = View Permit Originated
9 Bank Teller =teller_2 Personalinfo = CustomerTwo_Personalinfo BankActions = Create Permit Originated
10 Bank Teller =teller_2 Personalinfo = CustomerTwo_Perzonalinfo BankActions = View Permit Originated
11 Bank Teller =teller_2 Personalinfo = CustomerThree_Personalinfo BankActions = Create Permit Originated
12 Bank Teller =teller_2 Personalinfo = CustomerThree_Personalinfo BankActions = View Permit Originated
13 Bank Teller =teller_3 Personalinfo = CustomerOne_Personalinfo BankActions = Create Permit Originated
14 Bank Teller = teller_3 Personalinfo = CustomerOne_Personallnfo BankActions = View Permit Originated
15 Bank Teller = teller_3 Personalinfo = CustomerTwo_Personalinfo BankActions = Create Permit Originated
16 Bank Teller =teller_3 Personalinfo = CustomerTwo_Personalinfo BankActions = View Permit Originated
17 Bank Teller =teller_3 Personalinfo = CustomerThree_Personalinfo BankActions = Create Permit Originated
18 Bank Teller =teller_3 Personalinfo = CustomerThree_Personalinfo BankActions = View Permit Originated
iz Bank Teller =teller_1 Loaninfo = CustomerOne_Loan BankActions = View Permit Originated
20 Bank Teller = teller_1 Loaninfo = CustomerTwo_Loan BankActicns = View Permit Originated
21 Bank Teller = teller_2 Loaninfo = CustomerOne_Loan BankActions = View Permit Originated
22 Bank Teller = teller_2 Loaninfo = CustomerTwo_Loan BankActions = View Permit Originated
23 Bank Teller =teller_3 Loaninfo = CustomerOne_Loan BankActions = View Permit Originated
24 Bank Teller =teller_3 Loaninfo = CustomerTwo_Loan BankActions = View Permit Originated
25 Bank Teller =teller_1 Lozninfo = CustomerOne_Loan BankActions = Approve Deny Originated
26 Bank Teller =teller_1 Loaninfo = CustomerTwo_Loan BankActions = Approve Deny Originated
a7 Bank Teller =teller_2 Leaninfo = CustomerOne_Loan BankActions = Approve Deny Originated
28 Bank Teller = teller_3 Loaninfa = CustomerTwo_Loan BankActions = Approve Deny Originated
29 Bank Teller = teller_3 Loaninfa = CustomerOne_Loan BankActicns = Approve Deny Originated
30 Bank Teller =teller_3 Loaninfo = CustomerTwo_Loan BankActions = Approve Deny Originated
Fig. 34. BankTeller Policy
LeanOfficer Policy Policy(s) Summary <& 1 rows outof1 LSearEh | R
Model Policy Name Rule Combination Algorithm Policy Enforcement Algorithm No. of Rule(s) Time Created Last Modified
ABAC LoanOfficer Policy Deny-overrides Deny Biased 24 July 3, 2018 14:40:46 July 3, 2018 14:40:46
Rule (s) defined with selected policy (LoanOfficer Policy) @ 24 rows out of 24 } Search ! =]
Sequence No Subject Resource Action Environment Condition Decision Inheritance Relation
1 LoanOfficer = officer_1 Personalinfo = CustomerOne_Personalinfo BankActions = View Permit Originated
2 LoanOfficer = officer_1 Perscnalinfe = CustomerOne_Personalinfo BankActions = Create Permit Originated
3 LoanOfficer = officer_1 Personallinfo = CustomerTwo_Personalinfo BankActions = View Permit Originated
4 LoanOfficer = officer_1 Personallnfo = CustomerTwo_Personalinfo BankActions = Create Permit Originated
5 LoanOfficer = officer_1 Personalinfo = CustomerThree_Personalinfo BankActions = View Permit Originated
6 LoanOfficer = officer_1 Personalinfo = CustomerThree_Personalinfo BankActions = Create Permit Originated
7 LoanOfficer = officer_1 Loaninfo = CustomerOne_Loan BankActions = View Permit Originated
8 LoanOfficer = officer_1 Loaninfo = CustomerOne_Loan BankActions = Create Permit Originated
g LoanOfficer = officer_1 Loaninfo = CustomerTwo_Loan BankActions = View Permit Originated
10 LoanOfficer = officer_1 Loaninfo = CustomerTwao_Loan BankActions = Create Permit Originated
11 LoanOfficer = officer_2 Personallnfo = CustomerQne_Personalinfo BankActions = View Permit Originated
12 LoanOfficer = officer_2 Perzonalinfo = CustomerOne_Personalinfo BankActions = Create Permit Originated
13 LoanOfficer = officer_2 Personalinfe = CustomerTwo_Personalinfo BankActions = View Permit Originated
14 LoanOfficer = officer_2 Personalinfo = CustomerTwo_Personzlinfo BankActions = Create Permit Originated
15 LoanOfficer = officer_2 Personalinfo = CustomerThree_Personalinfo BankActions = View Permit Originated
16 LoanOfficer = officer_2 Perzonallnfo = CustomerThree_Personalinfo BankActions = Create Permit Originated
17 LoanOfficer = officer_2 Loaninfo = CustomerQOne_Loan BankActions = View Permit Originated
18 LoanOfficer = officer_2 Loaninfo = CustomerOne_Loan BankActions = Create Permit Originated
19 LoanOfficer = officer_2 Loaninfo = CustomerTwo_Loan BankActions = View Permit Originated
20 LoanOfficer = officer_2 Loaninfo = CustomerTwo_Loan BankActions = Create Permit Originated
21 LoanOfficer = officer_1 Loaninfo = CustomerOne_Loan BankActions = Approve Deny Originated
22 LoanOfficer = officer_1 Loaninfo = CustomerTwo_Loan BankActions = Approve Deny Originated
23 LoanOfficer = officer_2 Loaninfo = CustomerOne_Loan BankActions = Approve Deny Originated
24 LoanOfficer = officer_2 Loaninfo = CustomerTwo_Loan BankActions = Approve Deny Originated

Fig. 35. LoanOfficer Policy

WWW.SECURITYPOLICYTOOL.COM

30

3 i -
Fivianager Policy Policy(s) Summary @ 1 rows out of 1 search 0w
Model Policy Name Rule Combination Algorithm Policy Enforcement Algorithm No. of Rule(s) Time Created Last Medified
ABAC Fivianager Policy Permit-gverrides Permit Biased 12 July 3, 2018 15:03:03 July 3, 2018 15:03.03
Rule (5] defined with selected policy (FManager Policy) <@ 12 rows out of 12 Search =l
Sequence Mo Subject Resource Action Environment Condition Decision Inheritance Relation
1 Financial Manager = manager Personazlinfo = CustomerOne_Personalinfo BankActions = Cr Permit Originated
2 Financial Manager = manager Personalinfo = CustomerOn nalinfo BankActions = Permit Originated
3 Financial Manager = manager Personalinfo = CustomerTw nalinfo BankActions = Ci Permit Originated
4 Financial Manager = manager Personalinfo = CustomerTw nalinfa BankActions = Permit Originated
5 Financial Manager = manager Personalinfo = CustomerThre onallnfo Bankactions Permit Originated
& Financial Manager = manager Personalinfo = CustomerThree_Personalinfo BankAction: Permit Originated
7 Financial Manager = manager Loaninfo = CustomerOne_Loan BankActions Permit Originated
8 Financial Manager = manager Loaninfo = CustomerOne_Loan BankAction! Permit Originated
9 Financial Manager = manager Loaninfo = CustomerTwo_Loan BankActions Permit Originated
10 Financial Manager = manager Loaninfo = CustomerTwe_Loan BankActions = View Permit Originated
11 Financial Manager = manager Loaninfo = CustomerOne_Loan BankActions = Approve Permit Originated
12 Financial Manager = manager Loaninfa = CustomerTwe_Loan BankActions = Approve Permit Originated

Fig. 36. FManager Policy

22 UNDERSTANDING THIS ERROR - TEST CASE 5 (INCONSISTENT ASSIGNMENT)

Now that we have our policies set up let’s discuss the error we will be looking at in this
tifth example. When XACML policies are being constructed there is potential for “Inconsistent
Assignment” errors being created. This error occurs when a policy author has unintentionally
assigned attributes, conditions, rule or other policy variables/values incorrectly in different poli-
cies. For example, Attribute LoanOfficer could be incorrectly termed as LoanOfficr or LoanOficer
in different policy documents.

Doing so, could result in a significant security vulnerability due to the system providing unin-
tended access decisions as consequence of the incorrectly defined policy value(s). Organizations
with very large and complex policies are especially at risk for this type of error as small
inconsistencies could very easily go unnoticed if they do not have a rigorous method for
modeling and testing their policies.

23 RESOLVING THIS ERROR - TEST CASE 5 (INCONSISTENT ASSIGNMENT)

Security Policy Tool by default prevents this error from occurring. After modeling your policies
you can automatically convert your policies into XACML 3.0. The XACML Editor included with
Security Policy Tool contains intuitive features to help you create secure and accurate XACML
documents. Several robust features that prevent inconsistent assignment errors include Integrity
Verification, Syntax Error Detection, Assistive XACML Code Completion, and others.

WWW.SECURITYPOLICYTOOL.COM

Search

=& PErSenalinee | NTCR./ A WWW.W3.0rg/ ZUUL/ XVILSCNEMERSINNE

@ CustomerOne_Personalinfo

© CustomerTwo_Personalinfo
@ CustomerThree_Personalinfo

E-@ Loaninfo ; hitp://www.w3.0rg/2001/XMLSchema#string

@ CustomerQne_Loan

© CustomerTwo_Loan

B ¥& Action

=@ BankActions ; http://www.w3.org/2001/XML5chema#string

@ Environment

-4 Condition

== Inheritance

. subject Inheritance
+i; Resource Inheritance
=4k Model

Bl 8 ABAC

Add a New ABAC Rule
© LoanOfficer Pg

© FManager Poli
- Z Update ABAC Palicy

- [Multilevel Delete

- £ Workflow | Convert Policy into XACML3.0 Policy |

= §F Access Control Securi |Convert Policy into XACML 3.0 Pol\cvl

& Individual Security Requirement
E Separation of Duty Security Requirement

= Combinatorial Test Suite

Fig. 37. Convert Modeled Policies into XACML

31

BankTeller Policy Policy(z) Summary

IModel Policy Name Rule Combination Algorithm
ABAC BankTeller Policy Deny-overrides
Rule (=) defined with selected policy (BankTeller Policy)
Sequence No Subject Resource

Bank Teller=teller_1

Perzonalinfo = CustomerOne_Personzlinfo

Bank Teller=teller_1

Perzonalinfo = CustomerOne_Perzonalinfo

Bank Teller=teller_1

Perzonalinfo = CustomerTwo_Perzonalinfo

Bank Teller=teller_1

Perzonalinfo = CustomerTwo_Perzonalinfo

Bank Teller = teller_1

Personalinfo = CustomerThree_Personalinfo

Bank Teller = teller_1

Personallnfo = CustomerThree_Personalinfo

Bank Teller = teller_2

Perzonalinfo = CustomerOne_Perzonalinfo

Bank Teller = teller_2

Perzonalinfo = CustomerOne_Perzonalinfo

wlo |~ | & fw|m) e

Bank Teller = teller_2

Perzonalinfo = CustomerTwo_Personzlinfo

=
o

Bank Teller = teller_2

Personalinfo = CustomerTwo_Personalinfo

[
(=

Bank Teller=teller_2

Perzonalinfo = CuztomerThree_Perzonalinfo

[
%)

Bank Teller=teller_2

Perzonalinfo = CustomerThree_Perzonalinfo

I
w

Bank Teller =teller_3

Perzonalinfo = CustomerOne_Perzonalinfo

1
&

Bank Teller=teller_3

Perzonallnfo = CustomerOne_Personalinfo

I
n

Bank Teller = teller_3

Perzonalinfo = CustomerTwo_Perzonalinfo

[
m

Bank Teller = teller_3

Perzonalinfo = CustomerTwo_Perzonalinfo

[
-1

Bank Teller = teller_3

Personalinfo = CustomerThree_Personalinfo

=
o

Bank Teller = teller_3

Personalinfo = CustomerThree_Personalinfo

I
o

Bank Teller=teller_1

Loaninfo = CustomerOne_Loan

=]
[=]

Bank Teller=teller_1

Loaninfo = CustomerTwo_Loan

ra
[

Bank Teller = teller_2

Loaninfo = CustomerOne_Loan

ra
%}

Bank Teller = teller_2

Loaninfo = CustomerTwo_Loan

[
W

Bank Teller = teller_3

Loaninfo = CustomerOne_Loan

ra
&

Bank Teller = teller_3

Loaninfo = CustomerTwo_Loan

[
n

Bank Teller=teller_1

Leaninfo = CustomerOne_Loan

ra
@

Bank Teller=teller_1

Leaninfo = CustomerTwo_Loan

WWW.SECURITYPOLICYTOOL.COM 32

& Untitleda - XACML Editor
File Edit Project Help

@ B-8 8 R G&a&R KD
[E8 untitiedz @

Pe&BYA|OLVERB

& o Erroris found

lof
B~ 0 Match
i o Atributevalue
© AftributeDesignater
3. o Match

<Match MatchId="urn:oasis:nmames:tc:xac
<AttributeValue Data
<AttributeDesignator
"urn:oasis:names:tcixacml:1.0:subject

0: function:http: //wn.w3. org/2001/xmlschemagstring-equal™>
eller l</AttributeValue>

Aributevalue
L o AttributeDesignator
3. 4 Match
i o AttributeValue
AttributeDesignator
- 4 Match

rue"></AttributeDesignator>

<AttributeVa

<AttributeDesignator

nttp:/ /. w3 f2001/

18 </Match>

208 <Match MatchT

21 <AttributeValue Data
<AttributeDesignator

:oasis:names:tc:xacml:1.0:

B % Rule

© AttributeValue

L © AtributeDesignater
B 4 Match

i o AttributeValue

<AttributeValue Data’

<AttributeDesigna

"urn:oasis:names:tc:xacml:l.0:conditi
</Match>

© AfributeDesignater

2 </R110f>
29 </Anyof>
</Target>
</Rule>
<Rule Effect="Permit” RuleId="rule 2">
<Target>

« Amributevalue
i o AtiributeDesignator
G- © Rule

nfinflnkn]
5
5
g
=3
o3

<AttributeDesignator Cate.

"urnioasis:names:tc:xacm :sub3 rue"s</AttributeDesignator>
G </Match>

o At .
= Match MatchTA="nrn -na v AttributeValu

Fig. 38. Converted BankTeller Policy: No Errors

24 CONCLUSION

Now you should have a better understanding of what to look for as you go onto verify your
access control policies with Security Policy Tool. In addition to this document there are other
resources located in the Learning Center in your My account page that will help you start
leveraging Security Policy Tool to prevent access control leaks, today!

If you have not yet, download Security Policy Tool — Lite Version for FREE now! Close the door
the Access Control Leaks and save time and cost creating, modeling, testing, and verifying your
access control policies, today.

Click here to begin securing your policies now — [ife_Versiod.

InfoBeyond Technology, LLC is an innovative company specializing in Network, Machine Learning and Data
Security within the Information Technology industry. The mission of InfoBeyond is to research, develop, and
deliver viable software products for network communication and security. Some of our research is sponsored by
Department of Defense, Department of Energy, Missile Defense Agency, Department of Transportation, NIST
INFOBEYOND (National Institute of Standards and Technology), etc. Security Policy Tool is Awarded the 2017 Innovative Se-
w x/ curity Solution Award at the 2017 Big Data and SDN/NFV Summit. NXdrive is a fragment-based cybersecurity
storage system and more information can be found at www.NXdrive.com. The company is featured as one of
50 fast growth IT small businesses in 2017 by The Silicon Review.

https://www.securitypolicytool.com/demo

